Finding Optimal Solutions to Cooperative Pathfinding Problems

Abstract

In cooperative pathfinding problems, non-interfering paths that bring each agent from its current state to its goal state must be planned for multiple agents. We present the first practical, admissible, and complete algorithm for solving problems of this kind. First, we propose a technique called operator decomposition, which can be used to reduce the branching factors of many search algorithms, including algorithms for cooperative pathfinding. We then show how a type of independence common in instances of cooperative pathfinding problems can be exploited. Next, we take the idea of exploiting independent subproblems further by adding improvements that allow the algorithm to recognize many more cases of such independence. Finally, we show empirically that these techniques drastically improve the performance of the standard admissible algorithm for the cooperative pathfinding problem, and that their combination results in a complete algorithm capable of optimally solving relatively large problems in milliseconds.

Cite

Text

Standley. "Finding Optimal Solutions to Cooperative Pathfinding Problems." AAAI Conference on Artificial Intelligence, 2010. doi:10.1609/AAAI.V24I1.7564

Markdown

[Standley. "Finding Optimal Solutions to Cooperative Pathfinding Problems." AAAI Conference on Artificial Intelligence, 2010.](https://mlanthology.org/aaai/2010/standley2010aaai-finding/) doi:10.1609/AAAI.V24I1.7564

BibTeX

@inproceedings{standley2010aaai-finding,
  title     = {{Finding Optimal Solutions to Cooperative Pathfinding Problems}},
  author    = {Standley, Trevor Scott},
  booktitle = {AAAI Conference on Artificial Intelligence},
  year      = {2010},
  pages     = {173-178},
  doi       = {10.1609/AAAI.V24I1.7564},
  url       = {https://mlanthology.org/aaai/2010/standley2010aaai-finding/}
}