Nonnegative Spectral Clustering with Discriminative Regularization

Abstract

Clustering is a fundamental research topic in the field of data mining. Optimizing the objective functions of clustering algorithms, e.g. normalized cut and k-means, is an NP-hard optimization problem. Existing algorithms usually relax the elements of cluster indicator matrix from discrete values to continuous ones. Eigenvalue decomposition is then performed to obtain a relaxed continuous solution, which must be discretized. The main problem is that the signs of the relaxed continuous solution are mixed. Such results may deviate severely from the true solution, making it a nontrivial task to get the cluster labels. To address the problem, we impose an explicit nonnegative constraint for a more accurate solution during the relaxation. Besides, we additionally introduce a discriminative regularization into the objective to avoid overfitting. A new iterative approach is proposed to optimize the objective. We show that the algorithm is a general one which naturally leads to other extensions. Experiments demonstrate the effectiveness of our algorithm.

Cite

Text

Yang et al. "Nonnegative Spectral Clustering with Discriminative Regularization." AAAI Conference on Artificial Intelligence, 2011. doi:10.1609/AAAI.V25I1.7922

Markdown

[Yang et al. "Nonnegative Spectral Clustering with Discriminative Regularization." AAAI Conference on Artificial Intelligence, 2011.](https://mlanthology.org/aaai/2011/yang2011aaai-nonnegative/) doi:10.1609/AAAI.V25I1.7922

BibTeX

@inproceedings{yang2011aaai-nonnegative,
  title     = {{Nonnegative Spectral Clustering with Discriminative Regularization}},
  author    = {Yang, Yi and Shen, Heng Tao and Nie, Feiping and Ji, Rongrong and Zhou, Xiaofang},
  booktitle = {AAAI Conference on Artificial Intelligence},
  year      = {2011},
  pages     = {555-560},
  doi       = {10.1609/AAAI.V25I1.7922},
  url       = {https://mlanthology.org/aaai/2011/yang2011aaai-nonnegative/}
}