Large Scale Temporal RDFS Reasoning Using MapReduce

Abstract

In this work, we build a large scale reasoning engine under temporal RDFS semantics using MapReduce. We identify the major challenges of applying MapReduce framework to reason over temporal information, and present our solutions to tackle them.

Cite

Text

Liu et al. "Large Scale Temporal RDFS Reasoning Using MapReduce." AAAI Conference on Artificial Intelligence, 2012. doi:10.1609/AAAI.V26I1.8417

Markdown

[Liu et al. "Large Scale Temporal RDFS Reasoning Using MapReduce." AAAI Conference on Artificial Intelligence, 2012.](https://mlanthology.org/aaai/2012/liu2012aaai-large/) doi:10.1609/AAAI.V26I1.8417

BibTeX

@inproceedings{liu2012aaai-large,
  title     = {{Large Scale Temporal RDFS Reasoning Using MapReduce}},
  author    = {Liu, Chang and Qi, Guilin and Yu, Yong},
  booktitle = {AAAI Conference on Artificial Intelligence},
  year      = {2012},
  pages     = {2441-2442},
  doi       = {10.1609/AAAI.V26I1.8417},
  url       = {https://mlanthology.org/aaai/2012/liu2012aaai-large/}
}