Large Scale Temporal RDFS Reasoning Using MapReduce
Abstract
In this work, we build a large scale reasoning engine under temporal RDFS semantics using MapReduce. We identify the major challenges of applying MapReduce framework to reason over temporal information, and present our solutions to tackle them.
Cite
Text
Liu et al. "Large Scale Temporal RDFS Reasoning Using MapReduce." AAAI Conference on Artificial Intelligence, 2012. doi:10.1609/AAAI.V26I1.8417Markdown
[Liu et al. "Large Scale Temporal RDFS Reasoning Using MapReduce." AAAI Conference on Artificial Intelligence, 2012.](https://mlanthology.org/aaai/2012/liu2012aaai-large/) doi:10.1609/AAAI.V26I1.8417BibTeX
@inproceedings{liu2012aaai-large,
title = {{Large Scale Temporal RDFS Reasoning Using MapReduce}},
author = {Liu, Chang and Qi, Guilin and Yu, Yong},
booktitle = {AAAI Conference on Artificial Intelligence},
year = {2012},
pages = {2441-2442},
doi = {10.1609/AAAI.V26I1.8417},
url = {https://mlanthology.org/aaai/2012/liu2012aaai-large/}
}