Automatic Construction and Natural-Language Description of Nonparametric Regression Models
Abstract
This paper presents the beginnings of an automatic statistician, focusing on regression problems. Our system explores an open-ended space of statistical models to discover a good explanation of a data set, and then produces a detailed report with figures and natural-language text. Our approach treats unknown regression functions nonparametrically using Gaussian processes, which has two important consequences. First, Gaussian processes can model functions in terms of high-level properties (e.g. smoothness, trends, periodicity, changepoints). Taken together with the compositional structure of our language of models this allows us to automatically describe functions in simple terms. Second, the use of flexible nonparametric models and a rich language for composing them in an open-ended manner also results in state-of-the-art extrapolation performance evaluated over 13 real time series data sets from various domains.
Cite
Text
Lloyd et al. "Automatic Construction and Natural-Language Description of Nonparametric Regression Models." AAAI Conference on Artificial Intelligence, 2014. doi:10.1609/AAAI.V28I1.8904Markdown
[Lloyd et al. "Automatic Construction and Natural-Language Description of Nonparametric Regression Models." AAAI Conference on Artificial Intelligence, 2014.](https://mlanthology.org/aaai/2014/lloyd2014aaai-automatic/) doi:10.1609/AAAI.V28I1.8904BibTeX
@inproceedings{lloyd2014aaai-automatic,
title = {{Automatic Construction and Natural-Language Description of Nonparametric Regression Models}},
author = {Lloyd, James Robert and Duvenaud, David and Grosse, Roger B. and Tenenbaum, Joshua B. and Ghahramani, Zoubin},
booktitle = {AAAI Conference on Artificial Intelligence},
year = {2014},
pages = {1242-1250},
doi = {10.1609/AAAI.V28I1.8904},
url = {https://mlanthology.org/aaai/2014/lloyd2014aaai-automatic/}
}