Rounded Dynamic Programming for Tree-Structured Stochastic Network Design

Abstract

We develop a fast approximation algorithm called rounded dynamic programming (RDP) for stochastic network design problems on directed trees. The underlying model describes phenomena that spread away from the root of a tree, for example, the spread of influence in a hierarchical organization or fish in a river network. Actions can be taken to intervene in the network—for some cost—to increase the probability of propagation along an edge. Our algorithm selects a set of actions to maximize the overall spread in the network under a limited budget. We prove that the algorithm is a fully polynomial-time approximation scheme (FPTAS), that is, it finds (1−ε)-optimal solutions in time polynomial in the input size and 1/ε. We apply the algorithm to the problem of allocating funds efficiently to remove barriers in a river network so fish can reach greater portions of their native range. Our experiments show that the algorithm is able to produce near-optimal solutions much faster than an existing technique.

Cite

Text

Wu et al. "Rounded Dynamic Programming for Tree-Structured Stochastic Network Design." AAAI Conference on Artificial Intelligence, 2014. doi:10.1609/AAAI.V28I1.8761

Markdown

[Wu et al. "Rounded Dynamic Programming for Tree-Structured Stochastic Network Design." AAAI Conference on Artificial Intelligence, 2014.](https://mlanthology.org/aaai/2014/wu2014aaai-rounded/) doi:10.1609/AAAI.V28I1.8761

BibTeX

@inproceedings{wu2014aaai-rounded,
  title     = {{Rounded Dynamic Programming for Tree-Structured Stochastic Network Design}},
  author    = {Wu, XiaoJian and Sheldon, Daniel and Zilberstein, Shlomo},
  booktitle = {AAAI Conference on Artificial Intelligence},
  year      = {2014},
  pages     = {479-485},
  doi       = {10.1609/AAAI.V28I1.8761},
  url       = {https://mlanthology.org/aaai/2014/wu2014aaai-rounded/}
}