Narrowing the Gap Between Saturated and Optimal Cost Partitioning for Classical Planning
Abstract
In classical planning, cost partitioning is a method for admissibly combining a set of heuristic estimators by distributing operator costs among the heuristics. An optimal cost partitioning is often prohibitively expensive to compute. Saturated cost partitioning is an alternative that is much faster to compute and has been shown to offer high-quality heuristic guidance on Cartesian abstractions. However, its greedy nature makes it highly susceptible to the order in which the heuristics are considered. We show that searching in the space of orders leads to significantly better heuristic estimates than with previously considered orders. Moreover, using multiple orders leads to a heuristic that is significantly better informed than any single-order heuristic. In experiments with Cartesian abstractions, the resulting heuristic approximates the optimal cost partitioning very closely.
Cite
Text
Seipp et al. "Narrowing the Gap Between Saturated and Optimal Cost Partitioning for Classical Planning." AAAI Conference on Artificial Intelligence, 2017. doi:10.1609/AAAI.V31I1.11022Markdown
[Seipp et al. "Narrowing the Gap Between Saturated and Optimal Cost Partitioning for Classical Planning." AAAI Conference on Artificial Intelligence, 2017.](https://mlanthology.org/aaai/2017/seipp2017aaai-narrowing/) doi:10.1609/AAAI.V31I1.11022BibTeX
@inproceedings{seipp2017aaai-narrowing,
title = {{Narrowing the Gap Between Saturated and Optimal Cost Partitioning for Classical Planning}},
author = {Seipp, Jendrik and Keller, Thomas and Helmert, Malte},
booktitle = {AAAI Conference on Artificial Intelligence},
year = {2017},
pages = {3651-3657},
doi = {10.1609/AAAI.V31I1.11022},
url = {https://mlanthology.org/aaai/2017/seipp2017aaai-narrowing/}
}