One-Step Spectral Clustering via Dynamically Learning Affinity Matrix and Subspace
Abstract
This paper proposes a one-step spectral clustering method by learning an intrinsic affinity matrix (i.e., the clustering result) from the low-dimensional space (i.e., intrinsic subspace) of original data. Specifically, the intrinsic affinitymatrix is learnt by: 1) the alignment of the initial affinity matrix learnt from original data; 2) the adjustment of the transformation matrix, which transfers the original feature space into its intrinsic subspace by simultaneously conducting feature selection and subspace learning; and 3) the clustering result constraint, i.e., the graph constructed by the intrinsic affinity matrix has exact c connected components where c is the number of clusters. In this way, two affinity matrices and a transformation matrix are iteratively updated until achieving their individual optimum, so that these two affinity matrices are consistent and the intrinsic subspace is learnt via the transformation matrix. Experimental results on both synthetic and benchmark datasets verified that our proposed method outputted more effective clustering result than the previous clustering methods.
Cite
Text
Zhu et al. "One-Step Spectral Clustering via Dynamically Learning Affinity Matrix and Subspace." AAAI Conference on Artificial Intelligence, 2017. doi:10.1609/AAAI.V31I1.10780Markdown
[Zhu et al. "One-Step Spectral Clustering via Dynamically Learning Affinity Matrix and Subspace." AAAI Conference on Artificial Intelligence, 2017.](https://mlanthology.org/aaai/2017/zhu2017aaai-one/) doi:10.1609/AAAI.V31I1.10780BibTeX
@inproceedings{zhu2017aaai-one,
title = {{One-Step Spectral Clustering via Dynamically Learning Affinity Matrix and Subspace}},
author = {Zhu, Xiaofeng and He, Wei and Li, Yonggang and Yang, Yang and Zhang, Shichao and Hu, Rongyao and Zhu, Yonghua},
booktitle = {AAAI Conference on Artificial Intelligence},
year = {2017},
pages = {2963-2969},
doi = {10.1609/AAAI.V31I1.10780},
url = {https://mlanthology.org/aaai/2017/zhu2017aaai-one/}
}