On Data-Dependent Random Features for Improved Generalization in Supervised Learning

Abstract

The randomized-feature approach has been successfully employed in large-scale kernel approximation and supervised learning. The distribution from which the random features are drawn impacts the number of features required to efficiently perform a learning task. Recently, it has been shown that employing data-dependent randomization improves the performance in terms of the required number of random features. In this paper, we are concerned with the randomized-feature approach in supervised learning for good generalizability. We propose the Energy-based Exploration of Random Features (EERF) algorithm based on a data-dependent score function that explores the set of possible features and exploits the promising regions. We prove that the proposed score function with high probability recovers the spectrum of the best fit within the model class. Our empirical results on several benchmark datasets further verify that our method requires smaller number of random features to achieve a certain generalization error compared to the state-of-the-art while introducing negligible pre-processing overhead. EERF can be implemented in a few lines of code and requires no additional tuning parameters.

Cite

Text

Shahrampour et al. "On Data-Dependent Random Features for Improved Generalization in Supervised Learning." AAAI Conference on Artificial Intelligence, 2018. doi:10.1609/AAAI.V32I1.11697

Markdown

[Shahrampour et al. "On Data-Dependent Random Features for Improved Generalization in Supervised Learning." AAAI Conference on Artificial Intelligence, 2018.](https://mlanthology.org/aaai/2018/shahrampour2018aaai-data/) doi:10.1609/AAAI.V32I1.11697

BibTeX

@inproceedings{shahrampour2018aaai-data,
  title     = {{On Data-Dependent Random Features for Improved Generalization in Supervised Learning}},
  author    = {Shahrampour, Shahin and Beirami, Ahmad and Tarokh, Vahid},
  booktitle = {AAAI Conference on Artificial Intelligence},
  year      = {2018},
  pages     = {4026-4033},
  doi       = {10.1609/AAAI.V32I1.11697},
  url       = {https://mlanthology.org/aaai/2018/shahrampour2018aaai-data/}
}