Adversarial Learning for Chinese NER from Crowd Annotations
Abstract
To quickly obtain new labeled data, we can choose crowdsourcing as an alternative way at lower cost in a short time. But as an exchange, crowd annotations from non-experts may be of lower quality than those from experts. In this paper, we propose an approach to performing crowd annotation learning for Chinese Named Entity Recognition (NER) to make full use of the noisy sequence labels from multiple annotators. Inspired by adversarial learning, our approach uses a common Bi-LSTM and a private Bi-LSTM for representing annotator-generic and -specific information. The annotator-generic information is the common knowledge for entities easily mastered by the crowd. Finally, we build our Chinese NE tagger based on the LSTM-CRF model. In our experiments, we create two data sets for Chinese NER tasks from two domains. The experimental results show that our system achieves better scores than strong baseline systems.
Cite
Text
Yang et al. "Adversarial Learning for Chinese NER from Crowd Annotations." AAAI Conference on Artificial Intelligence, 2018. doi:10.1609/AAAI.V32I1.11507Markdown
[Yang et al. "Adversarial Learning for Chinese NER from Crowd Annotations." AAAI Conference on Artificial Intelligence, 2018.](https://mlanthology.org/aaai/2018/yang2018aaai-adversarial/) doi:10.1609/AAAI.V32I1.11507BibTeX
@inproceedings{yang2018aaai-adversarial,
title = {{Adversarial Learning for Chinese NER from Crowd Annotations}},
author = {Yang, YaoSheng and Zhang, Meishan and Chen, Wenliang and Zhang, Wei and Wang, Haofen and Zhang, Min},
booktitle = {AAAI Conference on Artificial Intelligence},
year = {2018},
pages = {1627-1635},
doi = {10.1609/AAAI.V32I1.11507},
url = {https://mlanthology.org/aaai/2018/yang2018aaai-adversarial/}
}