WiFi-Based Human Identification via Convex Tensor Shapelet Learning

Abstract

We propose AutoID, a human identification system that leverages the measurements from existing WiFi-enabled Internet of Things (IoT) devices and produces the identity estimation via a novel sparse representation learning technique. The key idea is to use the unique fine-grained gait patterns of each person revealed from the WiFi Channel State Information (CSI) measurements, technically referred to as shapelet signatures, as the "fingerprint" for human identification. For this purpose, a novel OpenWrt-based IoT platform is designed to collect CSI data from commercial IoT devices. More importantly, we propose a new optimization-based shapelet learning framework for tensors, namely Convex Clustered Concurrent Shapelet Learning (C3SL), which formulates the learning problem as a convex optimization. The global solution of C3SL can be obtained efficiently with a generalized gradient-based algorithm, and the three concurrent regularization terms reveal the inter-dependence and the clustering effect of the CSI tensor data. Extensive experiments are conducted in multiple real-world indoor environments, showing that AutoID achieves an average human identification accuracy of 91% from a group of 20 people. As a combination of novel sensing and learning platform, AutoID attains substantial progress towards a more accurate, cost-effective and sustainable human identification system for pervasive implementations.

Cite

Text

Zou et al. "WiFi-Based Human Identification via Convex Tensor Shapelet Learning." AAAI Conference on Artificial Intelligence, 2018. doi:10.1609/AAAI.V32I1.11497

Markdown

[Zou et al. "WiFi-Based Human Identification via Convex Tensor Shapelet Learning." AAAI Conference on Artificial Intelligence, 2018.](https://mlanthology.org/aaai/2018/zou2018aaai-wifi/) doi:10.1609/AAAI.V32I1.11497

BibTeX

@inproceedings{zou2018aaai-wifi,
  title     = {{WiFi-Based Human Identification via Convex Tensor Shapelet Learning}},
  author    = {Zou, Han and Zhou, Yuxun and Yang, Jianfei and Gu, Weixi and Xie, Lihua and Spanos, Costas J.},
  booktitle = {AAAI Conference on Artificial Intelligence},
  year      = {2018},
  pages     = {1711-1719},
  doi       = {10.1609/AAAI.V32I1.11497},
  url       = {https://mlanthology.org/aaai/2018/zou2018aaai-wifi/}
}