Temporal Deformable Convolutional Encoder-Decoder Networks for Video Captioning
Abstract
It is well believed that video captioning is a fundamental but challenging task in both computer vision and artificial intelligence fields. The prevalent approach is to map an input video to a variable-length output sentence in a sequence to sequence manner via Recurrent Neural Network (RNN). Nevertheless, the training of RNN still suffers to some degree from vanishing/exploding gradient problem, making the optimization difficult. Moreover, the inherently recurrent dependency in RNN prevents parallelization within a sequence during training and therefore limits the computations. In this paper, we present a novel design — Temporal Deformable Convolutional Encoder-Decoder Networks (dubbed as TDConvED) that fully employ convolutions in both encoder and decoder networks for video captioning. Technically, we exploit convolutional block structures that compute intermediate states of a fixed number of inputs and stack several blocks to capture long-term relationships. The structure in encoder is further equipped with temporal deformable convolution to enable free-form deformation of temporal sampling. Our model also capitalizes on temporal attention mechanism for sentence generation. Extensive experiments are conducted on both MSVD and MSR-VTT video captioning datasets, and superior results are reported when comparing to conventional RNN-based encoder-decoder techniques. More remarkably, TDConvED increases CIDEr-D performance from 58.8% to 67.2% on MSVD.
Cite
Text
Chen et al. "Temporal Deformable Convolutional Encoder-Decoder Networks for Video Captioning." AAAI Conference on Artificial Intelligence, 2019. doi:10.1609/AAAI.V33I01.33018167Markdown
[Chen et al. "Temporal Deformable Convolutional Encoder-Decoder Networks for Video Captioning." AAAI Conference on Artificial Intelligence, 2019.](https://mlanthology.org/aaai/2019/chen2019aaai-temporal/) doi:10.1609/AAAI.V33I01.33018167BibTeX
@inproceedings{chen2019aaai-temporal,
title = {{Temporal Deformable Convolutional Encoder-Decoder Networks for Video Captioning}},
author = {Chen, Jingwen and Pan, Yingwei and Li, Yehao and Yao, Ting and Chao, Hongyang and Mei, Tao},
booktitle = {AAAI Conference on Artificial Intelligence},
year = {2019},
pages = {8167-8174},
doi = {10.1609/AAAI.V33I01.33018167},
url = {https://mlanthology.org/aaai/2019/chen2019aaai-temporal/}
}