Understanding Actors and Evaluating Personae with Gaussian Embeddings
Abstract
Understanding narrative content has become an increasingly popular topic. Nonetheless, research on identifying common types of narrative characters, or personae, is impeded by the lack of automatic and broad-coverage evaluation methods. We argue that computationally modeling actors provides benefits, including novel evaluation mechanisms for personae. Specifically, we propose two actor-modeling tasks, cast prediction and versatility ranking, which can capture complementary aspects of the relation between actors and the characters they portray. For an actor model, we present a technique for embedding actors, movies, character roles, genres, and descriptive keywords as Gaussian distributions and translation vectors, where the Gaussian variance corresponds to actors’ versatility. Empirical results indicate that (1) the technique considerably outperforms TransE (Bordes et al. 2013) and ablation baselines and (2) automatically identified persona topics (Bamman, O’Connor, and Smith 2013) yield statistically significant improvements in both tasks, whereas simplistic persona descriptors including age and gender perform inconsistently, validating prior research.
Cite
Text
Kim et al. "Understanding Actors and Evaluating Personae with Gaussian Embeddings." AAAI Conference on Artificial Intelligence, 2019. doi:10.1609/AAAI.V33I01.33016570Markdown
[Kim et al. "Understanding Actors and Evaluating Personae with Gaussian Embeddings." AAAI Conference on Artificial Intelligence, 2019.](https://mlanthology.org/aaai/2019/kim2019aaai-understanding/) doi:10.1609/AAAI.V33I01.33016570BibTeX
@inproceedings{kim2019aaai-understanding,
title = {{Understanding Actors and Evaluating Personae with Gaussian Embeddings}},
author = {Kim, Hannah and Katerenchuk, Denys and Billet, Daniel and Huan, Jun and Park, Haesun and Li, Boyang},
booktitle = {AAAI Conference on Artificial Intelligence},
year = {2019},
pages = {6570-6577},
doi = {10.1609/AAAI.V33I01.33016570},
url = {https://mlanthology.org/aaai/2019/kim2019aaai-understanding/}
}