SAM-Net: Integrating Event-Level and Chain-Level Attentions to Predict What Happens Next
Abstract
Scripts represent knowledge of event sequences that can help text understanding. Script event prediction requires to measure the relation between an existing chain and the subsequent event. The dominant approaches either focus on the effects of individual events, or the influence of the chain sequence. However, only considering individual events will lose much semantic relations within the event chain, and only considering the sequence of the chain will introduce much noise. With our observations, both the individual events and the event segments within the chain can facilitate the prediction of the subsequent event. This paper develops self attention mechanism to focus on diverse event segments within the chain and the event chain is represented as a set of event segments. We utilize the event-level attention to model the relations between subsequent events and individual events. Then, we propose the chain-level attention to model the relations between subsequent events and event segments within the chain. Finally, we integrate event-level and chain-level attentions to interact with the chain to predict what happens next. Comprehensive experiment results on the widely used New York Times corpus demonstrate that our model achieves better results than other state-of-the-art baselines by adopting the evaluation of Multi-Choice Narrative Cloze task.
Cite
Text
Lv et al. "SAM-Net: Integrating Event-Level and Chain-Level Attentions to Predict What Happens Next." AAAI Conference on Artificial Intelligence, 2019. doi:10.1609/AAAI.V33I01.33016802Markdown
[Lv et al. "SAM-Net: Integrating Event-Level and Chain-Level Attentions to Predict What Happens Next." AAAI Conference on Artificial Intelligence, 2019.](https://mlanthology.org/aaai/2019/lv2019aaai-sam/) doi:10.1609/AAAI.V33I01.33016802BibTeX
@inproceedings{lv2019aaai-sam,
title = {{SAM-Net: Integrating Event-Level and Chain-Level Attentions to Predict What Happens Next}},
author = {Lv, Shangwen and Qian, Wanhui and Huang, Longtao and Han, Jizhong and Hu, Songlin},
booktitle = {AAAI Conference on Artificial Intelligence},
year = {2019},
pages = {6802-6809},
doi = {10.1609/AAAI.V33I01.33016802},
url = {https://mlanthology.org/aaai/2019/lv2019aaai-sam/}
}