A Two-Stream Mutual Attention Network for Semi-Supervised Biomedical Segmentation with Noisy Labels

Abstract

Learning-based methods suffer from a deficiency of clean annotations, especially in biomedical segmentation. Although many semi-supervised methods have been proposed to provide extra training data, automatically generated labels are usually too noisy to retrain models effectively. In this paper, we propose a Two-Stream Mutual Attention Network (TSMAN) that weakens the influence of back-propagated gradients caused by incorrect labels, thereby rendering the network robust to unclean data. The proposed TSMAN consists of two sub-networks that are connected by three types of attention models in different layers. The target of each attention model is to indicate potentially incorrect gradients in a certain layer for both sub-networks by analyzing their inferred features using the same input. In order to achieve this purpose, the attention models are designed based on the propagation analysis of noisy gradients at different layers. This allows the attention models to effectively discover incorrect labels and weaken their influence during parameter updating process. By exchanging multi-level features within two-stream architecture, the effects of noisy labels in each sub-network are reduced by decreasing the noisy gradients. Furthermore, a hierarchical distillation is developed to provide reliable pseudo labels for unlabelded data, which further boosts the performance of TSMAN. The experiments using both HVSMR 2016 and BRATS 2015 benchmarks demonstrate that our semi-supervised learning framework surpasses the state-of-the-art fully-supervised results.

Cite

Text

Min et al. "A Two-Stream Mutual Attention Network for Semi-Supervised Biomedical Segmentation with Noisy Labels." AAAI Conference on Artificial Intelligence, 2019. doi:10.1609/AAAI.V33I01.33014578

Markdown

[Min et al. "A Two-Stream Mutual Attention Network for Semi-Supervised Biomedical Segmentation with Noisy Labels." AAAI Conference on Artificial Intelligence, 2019.](https://mlanthology.org/aaai/2019/min2019aaai-two/) doi:10.1609/AAAI.V33I01.33014578

BibTeX

@inproceedings{min2019aaai-two,
  title     = {{A Two-Stream Mutual Attention Network for Semi-Supervised Biomedical Segmentation with Noisy Labels}},
  author    = {Min, Shaobo and Chen, Xuejin and Zha, Zheng-Jun and Wu, Feng and Zhang, Yongdong},
  booktitle = {AAAI Conference on Artificial Intelligence},
  year      = {2019},
  pages     = {4578-4585},
  doi       = {10.1609/AAAI.V33I01.33014578},
  url       = {https://mlanthology.org/aaai/2019/min2019aaai-two/}
}