Regularizing Fully Convolutional Networks for Time Series Classification by Decorrelating Filters

Abstract

Deep neural networks are prone to overfitting, especially in small training data regimes. Often, these networks are overparameterized and the resulting learned weights tend to have strong correlations. However, convolutional networks in general, and fully convolution neural networks (FCNs) in particular, have been shown to be relatively parameter efficient, and have recently been successfully applied to time series classification tasks. In this paper, we investigate the application of different regularizers on the correlation between the learned convolutional filters in FCNs using Batch Normalization (BN) as a regularizer for time series classification (TSC) tasks. Results demonstrate that despite orthogonal initialization of the filters, the average correlation across filters (especially for filters in higher layers) tends to increase as training proceeds, indicating redundancy of filters. To mitigate this redundancy, we propose a strong regularizer, using simple yet effective filter decorrelation. Our proposed method yields significant gains in classification accuracy for 44 diverse time series datasets from the UCR TSC benchmark repository.

Cite

Text

Paneri et al. "Regularizing Fully Convolutional Networks for Time Series Classification by Decorrelating Filters." AAAI Conference on Artificial Intelligence, 2019. doi:10.1609/AAAI.V33I01.330110003

Markdown

[Paneri et al. "Regularizing Fully Convolutional Networks for Time Series Classification by Decorrelating Filters." AAAI Conference on Artificial Intelligence, 2019.](https://mlanthology.org/aaai/2019/paneri2019aaai-regularizing/) doi:10.1609/AAAI.V33I01.330110003

BibTeX

@inproceedings{paneri2019aaai-regularizing,
  title     = {{Regularizing Fully Convolutional Networks for Time Series Classification by Decorrelating Filters}},
  author    = {Paneri, Kaushal and Tv, Vishnu and Malhotra, Pankaj and Vig, Lovekesh and Shroff, Gautam},
  booktitle = {AAAI Conference on Artificial Intelligence},
  year      = {2019},
  pages     = {10003-10004},
  doi       = {10.1609/AAAI.V33I01.330110003},
  url       = {https://mlanthology.org/aaai/2019/paneri2019aaai-regularizing/}
}