Weakly Supervised Scene Parsing with Point-Based Distance Metric Learning

Abstract

Semantic scene parsing is suffering from the fact that pixellevel annotations are hard to be collected. To tackle this issue, we propose a Point-based Distance Metric Learning (PDML) in this paper. PDML does not require dense annotated masks and only leverages several labeled points that are much easier to obtain to guide the training process. Concretely, we leverage semantic relationship among the annotated points by encouraging the feature representations of the intra- and intercategory points to keep consistent, i.e. points within the same category should have more similar feature representations compared to those from different categories. We formulate such a characteristic into a simple distance metric loss, which collaborates with the point-wise cross-entropy loss to optimize the deep neural networks. Furthermore, to fully exploit the limited annotations, distance metric learning is conducted across different training images instead of simply adopting an image-dependent manner. We conduct extensive experiments on two challenging scene parsing benchmarks of PASCALContext and ADE 20K to validate the effectiveness of our PDML, and competitive mIoU scores are achieved.

Cite

Text

Qian et al. "Weakly Supervised Scene Parsing with Point-Based Distance Metric Learning." AAAI Conference on Artificial Intelligence, 2019. doi:10.1609/AAAI.V33I01.33018843

Markdown

[Qian et al. "Weakly Supervised Scene Parsing with Point-Based Distance Metric Learning." AAAI Conference on Artificial Intelligence, 2019.](https://mlanthology.org/aaai/2019/qian2019aaai-weakly/) doi:10.1609/AAAI.V33I01.33018843

BibTeX

@inproceedings{qian2019aaai-weakly,
  title     = {{Weakly Supervised Scene Parsing with Point-Based Distance Metric Learning}},
  author    = {Qian, Rui and Wei, Yunchao and Shi, Honghui and Li, Jiachen and Liu, Jiaying and Huang, Thomas S.},
  booktitle = {AAAI Conference on Artificial Intelligence},
  year      = {2019},
  pages     = {8843-8850},
  doi       = {10.1609/AAAI.V33I01.33018843},
  url       = {https://mlanthology.org/aaai/2019/qian2019aaai-weakly/}
}