Binary Classifier Inspired by Quantum Theory
Abstract
Machine Learning (ML) helps us to recognize patterns from raw data. ML is used in numerous domains i.e. biomedical, agricultural, food technology, etc. Despite recent technological advancements, there is still room for substantial improvement in prediction. Current ML models are based on classical theories of probability and statistics, which can now be replaced by Quantum Theory (QT) with the aim of improving the effectiveness of ML. In this paper, we propose the Binary Classifier Inspired by Quantum Theory (BCIQT) model, which outperforms the state of the art classification in terms of recall for every category.
Cite
Text
Tiwari and Melucci. "Binary Classifier Inspired by Quantum Theory." AAAI Conference on Artificial Intelligence, 2019. doi:10.1609/AAAI.V33I01.330110051Markdown
[Tiwari and Melucci. "Binary Classifier Inspired by Quantum Theory." AAAI Conference on Artificial Intelligence, 2019.](https://mlanthology.org/aaai/2019/tiwari2019aaai-binary/) doi:10.1609/AAAI.V33I01.330110051BibTeX
@inproceedings{tiwari2019aaai-binary,
title = {{Binary Classifier Inspired by Quantum Theory}},
author = {Tiwari, Prayag and Melucci, Massimo},
booktitle = {AAAI Conference on Artificial Intelligence},
year = {2019},
pages = {10051-10052},
doi = {10.1609/AAAI.V33I01.330110051},
url = {https://mlanthology.org/aaai/2019/tiwari2019aaai-binary/}
}