Zero-Shot Text-to-SQL Learning with Auxiliary Task

Abstract

Recent years have seen great success in the use of neural seq2seq models on the text-to-SQL task. However, little work has paid attention to how these models generalize to realistic unseen data, which naturally raises a question: does this impressive performance signify a perfect generalization model, or are there still some limitations? In this paper, we first diagnose the bottleneck of text-to-SQL task by providing a new testbed, in which we observe that existing models present poor generalization ability on rarely-seen data. The above analysis encourages us to design a simple but effective auxiliary task, which serves as a supportive model as well as a regularization term to the generation task to increase the models generalization. Experimentally, We evaluate our models on a large text-to-SQL dataset WikiSQL. Compared to a strong baseline coarse-to-fine model, our models improve over the baseline by more than 3% absolute in accuracy on the whole dataset. More interestingly, on a zero-shot subset test of WikiSQL, our models achieve 5% absolute accuracy gain over the baseline, clearly demonstrating its superior generalizability.

Cite

Text

Chang et al. "Zero-Shot Text-to-SQL Learning with Auxiliary Task." AAAI Conference on Artificial Intelligence, 2020. doi:10.1609/AAAI.V34I05.6246

Markdown

[Chang et al. "Zero-Shot Text-to-SQL Learning with Auxiliary Task." AAAI Conference on Artificial Intelligence, 2020.](https://mlanthology.org/aaai/2020/chang2020aaai-zero/) doi:10.1609/AAAI.V34I05.6246

BibTeX

@inproceedings{chang2020aaai-zero,
  title     = {{Zero-Shot Text-to-SQL Learning with Auxiliary Task}},
  author    = {Chang, Shuaichen and Liu, Pengfei and Tang, Yun and Huang, Jing and He, Xiaodong and Zhou, Bowen},
  booktitle = {AAAI Conference on Artificial Intelligence},
  year      = {2020},
  pages     = {7488-7495},
  doi       = {10.1609/AAAI.V34I05.6246},
  url       = {https://mlanthology.org/aaai/2020/chang2020aaai-zero/}
}