Weakly Supervised Disentanglement by Pairwise Similarities

Abstract

Recently, researches related to unsupervised disentanglement learning with deep generative models have gained substantial popularity. However, without introducing supervision, there is no guarantee that the factors of interest can be successfully recovered (Locatello et al. 2018). Motivated by a real-world problem, we propose a setting where the user introduces weak supervision by providing similarities between instances based on a factor to be disentangled. The similarity is provided as either a binary (yes/no) or real-valued label describing whether a pair of instances are similar or not. We propose a new method for weakly supervised disentanglement of latent variables within the framework of Variational Autoencoder. Experimental results demonstrate that utilizing weak supervision improves the performance of the disentanglement method substantially.

Cite

Text

Chen and Batmanghelich. "Weakly Supervised Disentanglement by Pairwise Similarities." AAAI Conference on Artificial Intelligence, 2020. doi:10.1609/AAAI.V34I04.5754

Markdown

[Chen and Batmanghelich. "Weakly Supervised Disentanglement by Pairwise Similarities." AAAI Conference on Artificial Intelligence, 2020.](https://mlanthology.org/aaai/2020/chen2020aaai-weakly/) doi:10.1609/AAAI.V34I04.5754

BibTeX

@inproceedings{chen2020aaai-weakly,
  title     = {{Weakly Supervised Disentanglement by Pairwise Similarities}},
  author    = {Chen, Junxiang and Batmanghelich, Kayhan},
  booktitle = {AAAI Conference on Artificial Intelligence},
  year      = {2020},
  pages     = {3495-3502},
  doi       = {10.1609/AAAI.V34I04.5754},
  url       = {https://mlanthology.org/aaai/2020/chen2020aaai-weakly/}
}