Infusing Knowledge into the Textual Entailment Task Using Graph Convolutional Networks

Abstract

Textual entailment is a fundamental task in natural language processing. Most approaches for solving this problem use only the textual content present in training data. A few approaches have shown that information from external knowledge sources like knowledge graphs (KGs) can add value, in addition to the textual content, by providing background knowledge that may be critical for a task. However, the proposed models do not fully exploit the information in the usually large and noisy KGs, and it is not clear how it can be effectively encoded to be useful for entailment. We present an approach that complements text-based entailment models with information from KGs by (1) using Personalized PageRank to generate contextual subgraphs with reduced noise and (2) encoding these subgraphs using graph convolutional networks to capture the structural and semantic information in KGs. We evaluate our approach on multiple textual entailment datasets and show that the use of external knowledge helps the model to be robust and improves prediction accuracy. This is particularly evident in the challenging BreakingNLI dataset, where we see an absolute improvement of 5-20% over multiple text-based entailment models.

Cite

Text

Kapanipathi et al. "Infusing Knowledge into the Textual Entailment Task Using Graph Convolutional Networks." AAAI Conference on Artificial Intelligence, 2020. doi:10.1609/AAAI.V34I05.6318

Markdown

[Kapanipathi et al. "Infusing Knowledge into the Textual Entailment Task Using Graph Convolutional Networks." AAAI Conference on Artificial Intelligence, 2020.](https://mlanthology.org/aaai/2020/kapanipathi2020aaai-infusing/) doi:10.1609/AAAI.V34I05.6318

BibTeX

@inproceedings{kapanipathi2020aaai-infusing,
  title     = {{Infusing Knowledge into the Textual Entailment Task Using Graph Convolutional Networks}},
  author    = {Kapanipathi, Pavan and Thost, Veronika and Patel, Siva Sankalp and Whitehead, Spencer and Abdelaziz, Ibrahim and Balakrishnan, Avinash and Chang, Maria and Fadnis, Kshitij and Gunasekara, R. Chulaka and Makni, Bassem and Mattei, Nicholas and Talamadupula, Kartik and Fokoue, Achille},
  booktitle = {AAAI Conference on Artificial Intelligence},
  year      = {2020},
  pages     = {8074-8081},
  doi       = {10.1609/AAAI.V34I05.6318},
  url       = {https://mlanthology.org/aaai/2020/kapanipathi2020aaai-infusing/}
}