The Parameterized Complexity of Clustering Incomplete Data
Abstract
We study fundamental clustering problems for incomplete data. Specifically, given a set of incomplete d-dimensional vectors (representing rows of a matrix), the goal is to complete the missing vector entries in a way that admits a partitioning of the vectors into at most k clusters with radius or diameter at most r. We give tight characterizations of the parameterized complexity of these problems with respect to the parameters k, r, and the minimum number of rows and columns needed to cover all the missing entries. We show that the considered problems are fixed-parameter tractable when parameterized by the three parameters combined, and that dropping any of the three parameters results in parameterized intractability. A byproduct of our results is that, for the complete data setting, all problems under consideration are fixed-parameter tractable parameterized by k+r.
Cite
Text
Eiben et al. "The Parameterized Complexity of Clustering Incomplete Data." AAAI Conference on Artificial Intelligence, 2021. doi:10.1609/AAAI.V35I8.16896Markdown
[Eiben et al. "The Parameterized Complexity of Clustering Incomplete Data." AAAI Conference on Artificial Intelligence, 2021.](https://mlanthology.org/aaai/2021/eiben2021aaai-parameterized/) doi:10.1609/AAAI.V35I8.16896BibTeX
@inproceedings{eiben2021aaai-parameterized,
title = {{The Parameterized Complexity of Clustering Incomplete Data}},
author = {Eiben, Eduard and Ganian, Robert and Kanj, Iyad and Ordyniak, Sebastian and Szeider, Stefan},
booktitle = {AAAI Conference on Artificial Intelligence},
year = {2021},
pages = {7296-7304},
doi = {10.1609/AAAI.V35I8.16896},
url = {https://mlanthology.org/aaai/2021/eiben2021aaai-parameterized/}
}