Convergence Analysis of No-Regret Bidding Algorithms in Repeated Auctions
Abstract
The connection between games and no-regret algorithms has been widely studied in the literature. A fundamental result is that when all players play no-regret strategies, this produces a sequence of actions whose time-average is a coarse-correlated equilibrium of the game. However, much less is known about equilibrium selection in the case that multiple equilibria exist. In this work, we study the convergence of no-regret bidding algorithms in auctions. Besides being of theoretical interest, bidding dynamics in auctions is an important question from a practical viewpoint as well. We study the repeated game between bidders in which a single item is sold at each time step and the bidder's value is drawn from an unknown distribution. We show that if the bidders use any mean-based learning rule then the bidders converge with high probability to the truthful pure Nash Equilibrium in a second price auction, in VCG auction in the multi-slot setting and to the Bayesian Nash equilibrium in a first price auction. We note mean-based algorithms cover a wide variety of known no-regret algorithms such as Exp3, UCB, \epsilon-Greedy etc. Also, we analyze the convergence of the individual iterates produced by such learning algorithms, as opposed to the time-average of the sequence. Our experiments corroborate our theoretical findings and also find a similar convergence when we use other strategies such as Deep Q-Learning.
Cite
Text
Feng et al. "Convergence Analysis of No-Regret Bidding Algorithms in Repeated Auctions." AAAI Conference on Artificial Intelligence, 2021. doi:10.1609/AAAI.V35I6.16680Markdown
[Feng et al. "Convergence Analysis of No-Regret Bidding Algorithms in Repeated Auctions." AAAI Conference on Artificial Intelligence, 2021.](https://mlanthology.org/aaai/2021/feng2021aaai-convergence/) doi:10.1609/AAAI.V35I6.16680BibTeX
@inproceedings{feng2021aaai-convergence,
title = {{Convergence Analysis of No-Regret Bidding Algorithms in Repeated Auctions}},
author = {Feng, Zhe and Guruganesh, Guru and Liaw, Christopher and Mehta, Aranyak and Sethi, Abhishek},
booktitle = {AAAI Conference on Artificial Intelligence},
year = {2021},
pages = {5399-5406},
doi = {10.1609/AAAI.V35I6.16680},
url = {https://mlanthology.org/aaai/2021/feng2021aaai-convergence/}
}