Class-Attentive Diffusion Network for Semi-Supervised Classification

Abstract

Recently, graph neural networks for semi-supervised classification have been widely studied. However, existing methods only use the information of limited neighbors and do not deal with the inter-class connections in graphs. In this paper, we propose Adaptive aggregation with Class-Attentive Diffusion (AdaCAD), a new aggregation scheme that adaptively aggregates nodes probably of the same class among K-hop neighbors. To this end, we first propose a novel stochastic process, called Class-Attentive Diffusion (CAD), that strengthens attention to intra-class nodes and attenuates attention to inter-class nodes. In contrast to the existing diffusion methods with a transition matrix determined solely by the graph structure, CAD considers both the node features and the graph structure with the design of our class-attentive transition matrix that utilizes a classifier. Then, we further propose an adaptive update scheme that leverages different reflection ratios of the diffusion result for each node depending on the local class-context. As the main advantage, AdaCAD alleviates the problem of undesired mixing of inter-class features caused by discrepancies between node labels and the graph topology. Built on AdaCAD, we construct a simple model called Class-Attentive Diffusion Network (CAD-Net). Extensive experiments on seven benchmark datasets consistently demonstrate the efficacy of the proposed method and our CAD-Net significantly outperforms the state-of-the-art methods. Code is available at https://github.com/ljin0429/CAD-Net.

Cite

Text

Lim et al. "Class-Attentive Diffusion Network for Semi-Supervised Classification." AAAI Conference on Artificial Intelligence, 2021. doi:10.1609/AAAI.V35I10.17043

Markdown

[Lim et al. "Class-Attentive Diffusion Network for Semi-Supervised Classification." AAAI Conference on Artificial Intelligence, 2021.](https://mlanthology.org/aaai/2021/lim2021aaai-class/) doi:10.1609/AAAI.V35I10.17043

BibTeX

@inproceedings{lim2021aaai-class,
  title     = {{Class-Attentive Diffusion Network for Semi-Supervised Classification}},
  author    = {Lim, Jongin and Um, Daeho and Chang, Hyung Jin and Jo, Dae Ung and Choi, Jin Young},
  booktitle = {AAAI Conference on Artificial Intelligence},
  year      = {2021},
  pages     = {8601-8609},
  doi       = {10.1609/AAAI.V35I10.17043},
  url       = {https://mlanthology.org/aaai/2021/lim2021aaai-class/}
}