PANTHER: Pathway Augmented Nonnegative Tensor Factorization for HighER-Order Feature Learning

Abstract

Genetic pathways usually encode molecular mechanisms that can inform targeted interventions. It is often challenging for existing machine learning approaches to jointly model genetic pathways (higher-order features) and variants (atomic features), and present to clinicians interpretable models. In order to build more accurate and better interpretable machine learning models for genetic medicine, we introduce Pathway Augmented Nonnegative Tensor factorization for HighER-order feature learning (PANTHER). PANTHER selects informative genetic pathways that directly encode molecular mechanisms. We apply genetically motivated constrained tensor factorization to group pathways in a way that reflects molecular mechanism interactions. We then train a softmax classifier for disease types using the identified pathway groups. We evaluated PANTHER against multiple state-of-the-art constrained tensor/matrix factorization models, as well as group guided and Bayesian hierarchical models. PANTHER outperforms all state-of-the-art comparison models significantly (p

Cite

Text

Luo and Mao. "PANTHER: Pathway Augmented Nonnegative Tensor Factorization for HighER-Order Feature Learning." AAAI Conference on Artificial Intelligence, 2021. doi:10.1609/AAAI.V35I1.16113

Markdown

[Luo and Mao. "PANTHER: Pathway Augmented Nonnegative Tensor Factorization for HighER-Order Feature Learning." AAAI Conference on Artificial Intelligence, 2021.](https://mlanthology.org/aaai/2021/luo2021aaai-panther/) doi:10.1609/AAAI.V35I1.16113

BibTeX

@inproceedings{luo2021aaai-panther,
  title     = {{PANTHER: Pathway Augmented Nonnegative Tensor Factorization for HighER-Order Feature Learning}},
  author    = {Luo, Yuan and Mao, Chengsheng},
  booktitle = {AAAI Conference on Artificial Intelligence},
  year      = {2021},
  pages     = {371-380},
  doi       = {10.1609/AAAI.V35I1.16113},
  url       = {https://mlanthology.org/aaai/2021/luo2021aaai-panther/}
}