Internal Robust Representations for Domain Generalization
Abstract
Model generalization under distributional changes remains a significant challenge for machine learning. We present consolidating the internal representation of the training data in a model as a strategy of improving model generalization.
Cite
Text
Rostami. "Internal Robust Representations for Domain Generalization." AAAI Conference on Artificial Intelligence, 2023. doi:10.1609/AAAI.V37I13.26818Markdown
[Rostami. "Internal Robust Representations for Domain Generalization." AAAI Conference on Artificial Intelligence, 2023.](https://mlanthology.org/aaai/2023/rostami2023aaai-internal/) doi:10.1609/AAAI.V37I13.26818BibTeX
@inproceedings{rostami2023aaai-internal,
title = {{Internal Robust Representations for Domain Generalization}},
author = {Rostami, Mohammad},
booktitle = {AAAI Conference on Artificial Intelligence},
year = {2023},
pages = {15451},
doi = {10.1609/AAAI.V37I13.26818},
url = {https://mlanthology.org/aaai/2023/rostami2023aaai-internal/}
}