Global Explanations for Image Classifiers (Student Abstract)

Abstract

We hypothesize that deep network classifications of complex scenes can be explained using sets of relevant objects. We employ beam search and singular value decomposition to generate local and global explanations that summarize the deep model's interpretation of a class.

Cite

Text

Vasu and Tadepalli. "Global Explanations for Image Classifiers (Student Abstract)." AAAI Conference on Artificial Intelligence, 2023. doi:10.1609/AAAI.V37I13.27036

Markdown

[Vasu and Tadepalli. "Global Explanations for Image Classifiers (Student Abstract)." AAAI Conference on Artificial Intelligence, 2023.](https://mlanthology.org/aaai/2023/vasu2023aaai-global/) doi:10.1609/AAAI.V37I13.27036

BibTeX

@inproceedings{vasu2023aaai-global,
  title     = {{Global Explanations for Image Classifiers (Student Abstract)}},
  author    = {Vasu, Bhavan K. and Tadepalli, Prasad},
  booktitle = {AAAI Conference on Artificial Intelligence},
  year      = {2023},
  pages     = {16352-16353},
  doi       = {10.1609/AAAI.V37I13.27036},
  url       = {https://mlanthology.org/aaai/2023/vasu2023aaai-global/}
}