ConcaveQ: Non-Monotonic Value Function Factorization via Concave Representations in Deep Multi-Agent Reinforcement Learning

Cite

Text

Li et al. "ConcaveQ: Non-Monotonic Value Function Factorization via Concave Representations in Deep Multi-Agent Reinforcement Learning." AAAI Conference on Artificial Intelligence, 2024. doi:10.1609/AAAI.V38I16.29695

Markdown

[Li et al. "ConcaveQ: Non-Monotonic Value Function Factorization via Concave Representations in Deep Multi-Agent Reinforcement Learning." AAAI Conference on Artificial Intelligence, 2024.](https://mlanthology.org/aaai/2024/li2024aaai-concaveq/) doi:10.1609/AAAI.V38I16.29695

BibTeX

@inproceedings{li2024aaai-concaveq,
  title     = {{ConcaveQ: Non-Monotonic Value Function Factorization via Concave Representations in Deep Multi-Agent Reinforcement Learning}},
  author    = {Li, Huiqun and Zhou, Hanhan and Zou, Yifei and Yu, Dongxiao and Lan, Tian},
  booktitle = {AAAI Conference on Artificial Intelligence},
  year      = {2024},
  pages     = {17461-17468},
  doi       = {10.1609/AAAI.V38I16.29695},
  url       = {https://mlanthology.org/aaai/2024/li2024aaai-concaveq/}
}