AGMixup: Adaptive Graph Mixup for Semi-Supervised Node Classification

Abstract

Mixup is a data augmentation technique that enhances model generalization by interpolating between data points using a mixing ratio lambda in the image domain. Recently, the concept of mixup has been adapted to the graph domain through node-centric interpolations. However, these approaches often fail to address the complexity of interconnected relationships, potentially damaging the graph's natural topology and undermining node interactions. Furthermore, current graph mixup methods employ a one-size-fits-all strategy with a randomly sampled lambda for all mixup pairs, ignoring the diverse needs of different pairs. This paper proposes an Adaptive Graph Mixup (AGMixup) framework for semi-supervised node classification. AGMixup introduces a subgraph-centric approach, which treats each subgraph similarly to how images are handled in Euclidean domains, thus facilitating a more natural integration of mixup into graph-based learning. We also propose an adaptive mechanism to tune the mixing ratio lambda for diverse mixup pairs, guided by the contextual similarity and uncertainty of the involved subgraphs. Extensive experiments across seven datasets on semi-supervised node classification benchmarks demonstrate AGMixup's superiority over state-of-the-art graph mixup methods.

Cite

Text

Lu et al. "AGMixup: Adaptive Graph Mixup for Semi-Supervised Node Classification." AAAI Conference on Artificial Intelligence, 2025. doi:10.1609/AAAI.V39I18.34107

Markdown

[Lu et al. "AGMixup: Adaptive Graph Mixup for Semi-Supervised Node Classification." AAAI Conference on Artificial Intelligence, 2025.](https://mlanthology.org/aaai/2025/lu2025aaai-agmixup/) doi:10.1609/AAAI.V39I18.34107

BibTeX

@inproceedings{lu2025aaai-agmixup,
  title     = {{AGMixup: Adaptive Graph Mixup for Semi-Supervised Node Classification}},
  author    = {Lu, Weigang and Guan, Ziyu and Zhao, Wei and Yang, Yaming and Zhan, Yibing and Lu, Yiheng and Tao, Dapeng},
  booktitle = {AAAI Conference on Artificial Intelligence},
  year      = {2025},
  pages     = {19143-19151},
  doi       = {10.1609/AAAI.V39I18.34107},
  url       = {https://mlanthology.org/aaai/2025/lu2025aaai-agmixup/}
}