Beyond Text: Fine-Grained Multi-Modal Fact Verification with Hypergraph Transformers
Abstract
Fact verification has become increasingly vital in the internet age, driven by the proliferation of false claims and political misinformation. While traditional methods rely predominantly on text-based evidence, multi-modal evidence introduces richer sources of information, offering valuable insights for claim verification. Existing multi-modal verification models often focus on superficial correlations between claims and evidence, neglecting the complex semantic interactions present in fine-grained multi-modal signals. In this paper, we propose a novel framework for multi-modal fact-checking, named Hypergraph Transformer-based Multi-modal Fact-Checking (HGTMFC). Our approach captures high-order relationships between different modalities of evidence and claims by leveraging hypergraphs. HGTMFC models the intricate relationships among evidence across various modalities and enhances information propagation through a transformer-based mechanism embedded within the hypergraph. Moreover, we utilize linegraphs to refine this propagation process, further strengthening the model's reasoning capabilities. Experiments on benchmark datasets demonstrate that our model significantly outperforms existing approaches in multi-modal fact verification.
Cite
Text
Pang et al. "Beyond Text: Fine-Grained Multi-Modal Fact Verification with Hypergraph Transformers." AAAI Conference on Artificial Intelligence, 2025. doi:10.1609/AAAI.V39I6.32684Markdown
[Pang et al. "Beyond Text: Fine-Grained Multi-Modal Fact Verification with Hypergraph Transformers." AAAI Conference on Artificial Intelligence, 2025.](https://mlanthology.org/aaai/2025/pang2025aaai-beyond/) doi:10.1609/AAAI.V39I6.32684BibTeX
@inproceedings{pang2025aaai-beyond,
title = {{Beyond Text: Fine-Grained Multi-Modal Fact Verification with Hypergraph Transformers}},
author = {Pang, Hui and Li, Chaozhuo and Zhang, Litian and Wang, Senzhang and Zhang, Xi},
booktitle = {AAAI Conference on Artificial Intelligence},
year = {2025},
pages = {6389-6397},
doi = {10.1609/AAAI.V39I6.32684},
url = {https://mlanthology.org/aaai/2025/pang2025aaai-beyond/}
}