Approximate Parameter Inference in a Stochastic Reaction-Diffusion Model

Abstract

We present an approximate inference approach to parameter estimation in a spatio-temporal stochastic process of the reaction-diffusion type. The continuous space limit of an inference method for Markov jump processes leads to an approximation which is related to a spatial Gaussian process. An efficient solution in feature space using a Fourier basis is applied to inference on simulational data.

Cite

Text

Ruttor and Opper. "Approximate Parameter Inference in a Stochastic Reaction-Diffusion Model." Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, 2010.

Markdown

[Ruttor and Opper. "Approximate Parameter Inference in a Stochastic Reaction-Diffusion Model." Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, 2010.](https://mlanthology.org/aistats/2010/ruttor2010aistats-approximate/)

BibTeX

@inproceedings{ruttor2010aistats-approximate,
  title     = {{Approximate Parameter Inference in a Stochastic Reaction-Diffusion Model}},
  author    = {Ruttor, Andreas and Opper, Manfred},
  booktitle = {Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics},
  year      = {2010},
  pages     = {669-676},
  volume    = {9},
  url       = {https://mlanthology.org/aistats/2010/ruttor2010aistats-approximate/}
}