Private Causal Inference
Abstract
Causal inference deals with identifying which random variables ”cause” or control other random variables. Recent advances on the topic of causal inference based on tools from statistical estimation and machine learning have resulted in practical algorithms for causal inference. Causal inference has the potential to have significant impact on medical research, prevention and control of diseases, and identifying factors that impact economic changes to name just a few. However, these promising applications for causal inference are often ones that involve sensitive or personal data of users that need to be kept private (e.g., medical records, personal finances, etc). Therefore, there is a need for the development of causal inference methods that preserve data privacy. We study the problem of inferring causality using the current, popular causal inference framework, the additive noise model (ANM) while simultaneously ensuring privacy of the users. Our framework provides differential privacy guarantees for a variety of ANM variants. We run extensive experiments, and demonstrate that our techniques are practical and easy to implement.
Cite
Text
Kusner et al. "Private Causal Inference." International Conference on Artificial Intelligence and Statistics, 2016.Markdown
[Kusner et al. "Private Causal Inference." International Conference on Artificial Intelligence and Statistics, 2016.](https://mlanthology.org/aistats/2016/kusner2016aistats-private/)BibTeX
@inproceedings{kusner2016aistats-private,
title = {{Private Causal Inference}},
author = {Kusner, Matt J. and Sun, Yu and Sridharan, Karthik and Weinberger, Kilian Q.},
booktitle = {International Conference on Artificial Intelligence and Statistics},
year = {2016},
pages = {1308-1317},
url = {https://mlanthology.org/aistats/2016/kusner2016aistats-private/}
}