Learning Structural Weight Uncertainty for Sequential Decision-Making

Abstract

Learning probability distributions on the weights of neural networks (NNs) has recently proven beneficial in many applications. Bayesian methods, such as Stein variational gradient descent (SVGD), offer an elegant framework to reason about NN model uncertainty. However, by assuming independent Gaussian priors for the individual NN weights (as often applied), SVGD does not impose prior knowledge that there is often structural information (dependence) among weights. We propose efficient posterior learning of structural weight uncertainty, within an SVGD framework, by employing matrix variate Gaussian priors on NN parameters. We further investigate the learned structural uncertainty in sequential decision-making problems, including contextual bandits and reinforcement learning. Experiments on several synthetic and real datasets indicate the superiority of our model, compared with state-of-the-art methods.

Cite

Text

Zhang et al. "Learning Structural Weight Uncertainty for Sequential Decision-Making." International Conference on Artificial Intelligence and Statistics, 2018.

Markdown

[Zhang et al. "Learning Structural Weight Uncertainty for Sequential Decision-Making." International Conference on Artificial Intelligence and Statistics, 2018.](https://mlanthology.org/aistats/2018/zhang2018aistats-learning/)

BibTeX

@inproceedings{zhang2018aistats-learning,
  title     = {{Learning Structural Weight Uncertainty for Sequential Decision-Making}},
  author    = {Zhang, Ruiyi and Li, Chunyuan and Chen, Changyou and Carin, Lawrence},
  booktitle = {International Conference on Artificial Intelligence and Statistics},
  year      = {2018},
  pages     = {1137-1146},
  url       = {https://mlanthology.org/aistats/2018/zhang2018aistats-learning/}
}