SDF-Bayes: Cautious Optimism in Safe Dose-Finding Clinical Trials with Drug Combinations and Heterogeneous Patient Groups

Abstract

Phase I clinical trials are designed to test the safety (non-toxicity) of drugs and find the maximum tolerated dose (MTD). This task becomes significantly more challenging when multiple-drug dose-combinations (DC) are involved, due to the inherent conflict between the exponentially increasing DC candidates and the limited patient budget. This paper proposes a novel Bayesian design, SDF-Bayes, for finding the MTD for drug combinations in the presence of safety constraints. Rather than the conventional principle of escalating or de-escalating the current dose of one drug (perhaps alternating between drugs), SDF-Bayes proceeds by cautious optimism: it chooses the next DC that, on the basis of current information, is most likely to be the MTD (optimism), subject to the constraint that it only chooses DCs that have a high probability of being safe (caution). We also propose an extension, SDF-Bayes-AR, that accounts for patient heterogeneity and enables heterogeneous patient recruitment. Extensive experiments based on both synthetic and real-world datasets demonstrate the advantages of SDF-Bayes over state of the art DC trial designs in terms of accuracy and safety.

Cite

Text

Lee et al. " SDF-Bayes: Cautious Optimism in Safe Dose-Finding Clinical Trials with Drug Combinations and Heterogeneous Patient Groups ." Artificial Intelligence and Statistics, 2021.

Markdown

[Lee et al. " SDF-Bayes: Cautious Optimism in Safe Dose-Finding Clinical Trials with Drug Combinations and Heterogeneous Patient Groups ." Artificial Intelligence and Statistics, 2021.](https://mlanthology.org/aistats/2021/lee2021aistats-sdfbayes/)

BibTeX

@inproceedings{lee2021aistats-sdfbayes,
  title     = {{ SDF-Bayes: Cautious Optimism in Safe Dose-Finding Clinical Trials with Drug Combinations and Heterogeneous Patient Groups }},
  author    = {Lee, Hyun-Suk and Shen, Cong and Zame, William and Lee, Jang-Won and Schaar, Mihaela},
  booktitle = {Artificial Intelligence and Statistics},
  year      = {2021},
  pages     = {2980-2988},
  volume    = {130},
  url       = {https://mlanthology.org/aistats/2021/lee2021aistats-sdfbayes/}
}