MT3: Meta Test-Time Training for Self-Supervised Test-Time Adaption
Abstract
An unresolved problem in Deep Learning is the ability of neural networks to cope with domain shifts during test-time, imposed by commonly fixing network parameters after training. Our proposed method Meta Test-Time Training (MT3), however, breaks this paradigm and enables adaption at test-time. We combine meta-learning, self-supervision and test-time training to learn to adapt to unseen test distributions. By minimizing the self-supervised loss, we learn task-specific model parameters for different tasks. A meta-model is optimized such that its adaption to the different task-specific models leads to higher performance on those tasks. During test-time a single unlabeled image is sufficient to adapt the meta-model parameters. This is achieved by minimizing only the self-supervised loss component resulting in a better prediction for that image. Our approach significantly improves the state-of-the-art results on the CIFAR-10-Corrupted image classification benchmark.
Cite
Text
Bartler et al. " MT3: Meta Test-Time Training for Self-Supervised Test-Time Adaption ." Artificial Intelligence and Statistics, 2022.Markdown
[Bartler et al. " MT3: Meta Test-Time Training for Self-Supervised Test-Time Adaption ." Artificial Intelligence and Statistics, 2022.](https://mlanthology.org/aistats/2022/bartler2022aistats-mt3/)BibTeX
@inproceedings{bartler2022aistats-mt3,
title = {{ MT3: Meta Test-Time Training for Self-Supervised Test-Time Adaption }},
author = {Bartler, Alexander and Bühler, Andre and Wiewel, Felix and Döbler, Mario and Yang, Bin},
booktitle = {Artificial Intelligence and Statistics},
year = {2022},
pages = {3080-3090},
volume = {151},
url = {https://mlanthology.org/aistats/2022/bartler2022aistats-mt3/}
}