Differentially Private Federated Learning on Heterogeneous Data

Abstract

Federated Learning (FL) is a paradigm for large-scale distributed learning which faces two key challenges: (i) training efficiently from highly heterogeneous user data, and (ii) protecting the privacy of participating users. In this work, we propose a novel FL approach (DP-SCAFFOLD) to tackle these two challenges together by incorporating Differential Privacy (DP) constraints into the popular SCAFFOLD algorithm. We focus on the challenging setting where users communicate with a “honest-but-curious” server without any trusted intermediary, which requires to ensure privacy not only towards a third party observing the final model but also towards the server itself. Using advanced results from DP theory, we establish the convergence of our algorithm for convex and non-convex objectives. Our paper clearly highlights the trade-off between utility and privacy and demonstrates the superiority of DP-SCAFFOLD over the state-of-the-art algorithm DP-FedAvg when the number of local updates and the level of heterogeneity grows. Our numerical results confirm our analysis and show that DP-SCAFFOLD provides significant gains in practice.

Cite

Text

Noble et al. "Differentially Private Federated Learning on Heterogeneous Data." Artificial Intelligence and Statistics, 2022.

Markdown

[Noble et al. "Differentially Private Federated Learning on Heterogeneous Data." Artificial Intelligence and Statistics, 2022.](https://mlanthology.org/aistats/2022/noble2022aistats-differentially/)

BibTeX

@inproceedings{noble2022aistats-differentially,
  title     = {{Differentially Private Federated Learning on Heterogeneous Data}},
  author    = {Noble, Maxence and Bellet, Aurélien and Dieuleveut, Aymeric},
  booktitle = {Artificial Intelligence and Statistics},
  year      = {2022},
  pages     = {10110-10145},
  volume    = {151},
  url       = {https://mlanthology.org/aistats/2022/noble2022aistats-differentially/}
}