Learning Gaussian Multi-Index Models with Gradient Flow: Time Complexity and Directional Convergence

Abstract

This work focuses on the gradient flow dynamics of a neural network model that uses correlation loss to approximate a multi-index function on high-dimensional standard Gaussian data. Specifically, the multi-index function we consider is a sum of neurons $f^*(x) = \sum_{j=1}^k \sigma^*(v_j^T x)$ where $v_1, ..., v_k$ are unit vectors, and $\sigma^*$ lacks the first and second Hermite polynomials in its Hermite expansion. It is known that, for the single-index case ($k=1$), overcoming the search phase requires polynomial time complexity. We first generalize this result to multi-index functions characterized by vectors in arbitrary directions. After the search phase, it is not clear whether the network neurons converge to the index vectors, or get stuck at a sub-optimal solution. When the index vectors are orthogonal, we give a complete characterization of the fixed points and prove that neurons converge to the nearest index vectors. Therefore, using $n \asymp k \log k$ neurons ensures finding the full set of index vectors with gradient flow with high probability over random initialization. When $v_i^T v_j = \beta \geq 0$ for all $i \neq j$, we prove the existence of a sharp threshold $\beta_c = c/(c+k)$ at which the fixed point that computes the average of the index vectors transitions from a saddle point to a minimum. Numerical simulations show that using a correlation loss and a mild overparameterization suffices to learn all of the index vectors when they are nearly orthogonal, however, the correlation loss fails when the dot product between the index vectors exceeds a certain threshold.

Cite

Text

Simsek et al. "Learning Gaussian Multi-Index Models with Gradient Flow: Time Complexity and Directional Convergence." Proceedings of The 28th International Conference on Artificial Intelligence and Statistics, 2025.

Markdown

[Simsek et al. "Learning Gaussian Multi-Index Models with Gradient Flow: Time Complexity and Directional Convergence." Proceedings of The 28th International Conference on Artificial Intelligence and Statistics, 2025.](https://mlanthology.org/aistats/2025/simsek2025aistats-learning/)

BibTeX

@inproceedings{simsek2025aistats-learning,
  title     = {{Learning Gaussian Multi-Index Models with Gradient Flow: Time Complexity and Directional Convergence}},
  author    = {Simsek, Berfin and Bendjeddou, Amire and Hsu, Daniel},
  booktitle = {Proceedings of The 28th International Conference on Artificial Intelligence and Statistics},
  year      = {2025},
  pages     = {4204-4212},
  volume    = {258},
  url       = {https://mlanthology.org/aistats/2025/simsek2025aistats-learning/}
}