Abbe, Emmanuel

29 publications

ICLRW 2025 Algorithm Discovery with LLMs: Evolutionary Search Meets Reinforcement Learning Anja Šurina, Amin Mansouri, Amal Seddas, Maryna Viazovska, Emmanuel Abbe, Caglar Gulcehre
NeurIPS 2025 Inductive Domain Transfer in Misspecified Simulation-Based Inference Ortal Senouf, Antoine Wehenkel, Cédric Vincent-Cuaz, Emmanuel Abbe, Pascal Frossard
ICLR 2025 Learning High-Degree Parities: The Crucial Role of the Initialization Emmanuel Abbe, Elisabetta Cornacchia, Jan Hązła, Donald Kougang-Yombi
JMLR 2024 Generalization on the Unseen, Logic Reasoning and Degree Curriculum Emmanuel Abbe, Samy Bengio, Aryo Lotfi, Kevin Rizk
NeurIPS 2024 How Far Can Transformers Reason? the Globality Barrier and Inductive Scratchpad Emmanuel Abbe, Samy Bengio, Aryo Lotfi, Colin Sandon, Omid Saremi
ICML 2024 On the Minimal Degree Bias in Generalization on the Unseen for Non-Boolean Functions Denys Pushkin, Raphaël Berthier, Emmanuel Abbe
NeurIPS 2024 Transformation-Invariant Learning and Theoretical Guarantees for OOD Generalization Omar Montasser, Han Shao, Emmanuel Abbe
ICLR 2024 When Can Transformers Reason with Abstract Symbols? Enric Boix-Adserà, Omid Saremi, Emmanuel Abbe, Samy Bengio, Etai Littwin, Joshua M. Susskind
ICML 2023 Generalization on the Unseen, Logic Reasoning and Degree Curriculum Emmanuel Abbe, Samy Bengio, Aryo Lotfi, Kevin Rizk
NeurIPSW 2023 Inferring Cardiovascular Biomarkers with Hybrid Model Learning Ortal Senouf, Jens Behrmann, Joern-Henrik Jacobsen, Pascal Frossard, Emmanuel Abbe, Antoine Wehenkel
NeurIPS 2023 Provable Advantage of Curriculum Learning on Parity Targets with Mixed Inputs Emmanuel Abbe, Elisabetta Cornacchia, Aryo Lotfi
COLT 2023 SGD Learning on Neural Networks: Leap Complexity and Saddle-to-Saddle Dynamics Emmanuel Abbe, Enric Boix Adserà, Theodor Misiakiewicz
NeurIPS 2023 Transformers Learn Through Gradual Rank Increase Enric Boix-Adsera, Etai Littwin, Emmanuel Abbe, Samy Bengio, Joshua Susskind
ICML 2022 An Initial Alignment Between Neural Network and Target Is Needed for Gradient Descent to Learn Emmanuel Abbe, Elisabetta Cornacchia, Jan Hazla, Christopher Marquis
NeurIPS 2022 Learning to Reason with Neural Networks: Generalization, Unseen Data and Boolean Measures Emmanuel Abbe, Samy Bengio, Elisabetta Cornacchia, Jon M. Kleinberg, Aryo Lotfi, Maithra Raghu, Chiyuan Zhang
NeurIPS 2022 On the Non-Universality of Deep Learning: Quantifying the Cost of Symmetry Emmanuel Abbe, Enric Boix-Adsera
COLT 2022 The Merged-Staircase Property: A Necessary and Nearly Sufficient Condition for SGD Learning of Sparse Functions on Two-Layer Neural Networks Emmanuel Abbe, Enric Boix Adsera, Theodor Misiakiewicz
NeurIPS 2021 On the Power of Differentiable Learning Versus PAC and SQ Learning Emmanuel Abbe, Pritish Kamath, Eran Malach, Colin Sandon, Nathan Srebro
ICML 2021 Quantifying the Benefit of Using Differentiable Learning over Tangent Kernels Eran Malach, Pritish Kamath, Emmanuel Abbe, Nathan Srebro
COLT 2021 Stochastic Block Model Entropy and Broadcasting on Trees with Survey Emmanuel Abbe, Elisabetta Cornacchia, Yuzhou Gu, Yury Polyanskiy
NeurIPS 2021 The Staircase Property: How Hierarchical Structure Can Guide Deep Learning Emmanuel Abbe, Enric Boix-Adsera, Matthew S Brennan, Guy Bresler, Dheeraj Nagaraj
JMLR 2020 Chaining Meets Chain Rule: Multilevel Entropic Regularization and Training of Neural Networks Amir R. Asadi, Emmanuel Abbe
JMLR 2020 Generalized Nonbacktracking Bounds on the Influence Emmanuel Abbe, Sanjeev Kulkarni, Eun Jee Lee
NeurIPS 2020 On the Universality of Deep Learning Emmanuel Abbe, Colin Sandon
NeurIPS 2018 Chaining Mutual Information and Tightening Generalization Bounds Amir Asadi, Emmanuel Abbe, Sergio Verdu
ICML 2018 Communication-Computation Efficient Gradient Coding Min Ye, Emmanuel Abbe
NeurIPS 2017 Nonbacktracking Bounds on the Influence in Independent Cascade Models Emmanuel Abbe, Sanjeev Kulkarni, Eun Jee Lee
NeurIPS 2016 Achieving the KS Threshold in the General Stochastic Block Model with Linearized Acyclic Belief Propagation Emmanuel Abbe, Colin Sandon
NeurIPS 2015 Recovering Communities in the General Stochastic Block Model Without Knowing the Parameters Emmanuel Abbe, Colin Sandon