ML Anthology
Authors
Search
About
Abernethy, Jacob D
34 publications
AISTATS
2024
Extragradient Type Methods for Riemannian Variational Inequality Problems
Zihao Hu
,
Guanghui Wang
,
Xi Wang
,
Andre Wibisono
,
Jacob D Abernethy
,
Molei Tao
NeurIPS
2023
Faster Margin Maximization Rates for Generic Optimization Methods
Guanghui Wang
,
Zihao Hu
,
Vidya Muthukumar
,
Jacob D. Abernethy
COLT
2023
Minimizing Dynamic Regret on Geodesic Metric Spaces
Zihao Hu
,
Guanghui Wang
,
Jacob D. Abernethy
NeurIPS
2023
Riemannian Projection-Free Online Learning
Zihao Hu
,
Guanghui Wang
,
Jacob D. Abernethy
ICML
2022
Active Sampling for Min-Max Fairness
Jacob D Abernethy
,
Pranjal Awasthi
,
Matthäus Kleindessner
,
Jamie Morgenstern
,
Chris Russell
,
Jie Zhang
ICML
2022
ActiveHedge: Hedge Meets Active Learning
Bhuvesh Kumar
,
Jacob D Abernethy
,
Venkatesh Saligrama
NeurIPS
2022
Adaptive Oracle-Efficient Online Learning
Guanghui Wang
,
Zihao Hu
,
Vidya Muthukumar
,
Jacob D. Abernethy
ICML
2021
A Modular Analysis of Provable Acceleration via Polyak’s Momentum: Training a Wide ReLU Network and a Deep Linear Network
Jun-Kun Wang
,
Chi-Heng Lin
,
Jacob D Abernethy
NeurIPS
2021
Observation-Free Attacks on Stochastic Bandits
Yinglun Xu
,
Bhuvesh Kumar
,
Jacob D. Abernethy
NeurIPS
2019
Learning Auctions with Robust Incentive Guarantees
Jacob D. Abernethy
,
Rachel Cummings
,
Bhuvesh Kumar
,
Sam Taggart
,
Jamie H Morgenstern
NeurIPS
2019
Online Learning via the Differential Privacy Lens
Jacob D. Abernethy
,
Young Hun Jung
,
Chansoo Lee
,
Audra McMillan
,
Ambuj Tewari
NeurIPS
2018
Acceleration Through Optimistic No-Regret Dynamics
Jun-Kun Wang
,
Jacob D. Abernethy
COLT
2018
Faster Rates for Convex-Concave Games
Jacob D. Abernethy
,
Kevin A. Lai
,
Kfir Y. Levy
,
Jun-Kun Wang
NeurIPS
2017
On Frank-Wolfe and Equilibrium Computation
Jacob D. Abernethy
,
Jun-Kun Wang
NeurIPS
2016
Threshold Bandits, with and Without Censored Feedback
Jacob D. Abernethy
,
Kareem Amin
,
Ruihao Zhu
NeurIPS
2015
A Market Framework for Eliciting Private Data
Bo Waggoner
,
Rafael Frongillo
,
Jacob D. Abernethy
NeurIPS
2015
Fighting Bandits with a New Kind of Smoothness
Jacob D. Abernethy
,
Chansoo Lee
,
Ambuj Tewari
COLT
2014
Online Linear Optimization via Smoothing
Jacob D. Abernethy
,
Chansoo Lee
,
Abhinav Sinha
,
Ambuj Tewari
COLT
2012
A Characterization of Scoring Rules for Linear Properties
Jacob D. Abernethy
,
Rafael M. Frongillo
NeurIPS
2011
A Collaborative Mechanism for Crowdsourcing Prediction Problems
Jacob D. Abernethy
,
Rafael M. Frongillo
ALT
2010
A Regularization Approach to Metrical Task Systems
Jacob D. Abernethy
,
Peter L. Bartlett
,
Niv Buchbinder
,
Isabelle Stanton
COLT
2010
Can We Learn to Gamble Efficiently?
Jacob D. Abernethy
MLJ
2010
Graph Regularization Methods for Web Spam Detection
Jacob D. Abernethy
,
Olivier Chapelle
,
Carlos Castillo
NeurIPS
2010
Repeated Games Against Budgeted Adversaries
Jacob D. Abernethy
,
Manfred K. Warmuth
COLT
2009
A Stochastic View of Optimal Regret Through Minimax Duality
Jacob D. Abernethy
,
Alekh Agarwal
,
Peter L. Bartlett
,
Alexander Rakhlin
COLT
2009
An Efficient Bandit Algorithm for sqrt(T) Regret in Online Multiclass Prediction?
Jacob D. Abernethy
,
Alexander Rakhlin
COLT
2009
Beating the Adaptive Bandit with High Probability
Jacob D. Abernethy
,
Alexander Rakhlin
COLT
2009
Minimax Games with Bandits
Jacob D. Abernethy
,
Manfred K. Warmuth
COLT
2008
Competing in the Dark: An Efficient Algorithm for Bandit Linear Optimization
Jacob D. Abernethy
,
Elad Hazan
,
Alexander Rakhlin
COLT
2008
Optimal Stragies and Minimax Lower Bounds for Online Convex Games
Jacob D. Abernethy
,
Peter L. Bartlett
,
Alexander Rakhlin
,
Ambuj Tewari
COLT
2008
When Random Play Is Optimal Against an Adversary
Jacob D. Abernethy
,
Manfred K. Warmuth
,
Joel Yellin
COLT
2007
Multitask Learning with Expert Advice
Jacob D. Abernethy
,
Peter L. Bartlett
,
Alexander Rakhlin
ICML
2007
Online Discovery of Similarity Mappings
Alexander Rakhlin
,
Jacob D. Abernethy
,
Peter L. Bartlett
COLT
2006
Continuous Experts and the Binning Algorithm
Jacob D. Abernethy
,
John Langford
,
Manfred K. Warmuth