Abernethy, Jacob D

34 publications

AISTATS 2024 Extragradient Type Methods for Riemannian Variational Inequality Problems Zihao Hu, Guanghui Wang, Xi Wang, Andre Wibisono, Jacob D Abernethy, Molei Tao
NeurIPS 2023 Faster Margin Maximization Rates for Generic Optimization Methods Guanghui Wang, Zihao Hu, Vidya Muthukumar, Jacob D. Abernethy
COLT 2023 Minimizing Dynamic Regret on Geodesic Metric Spaces Zihao Hu, Guanghui Wang, Jacob D. Abernethy
NeurIPS 2023 Riemannian Projection-Free Online Learning Zihao Hu, Guanghui Wang, Jacob D. Abernethy
ICML 2022 Active Sampling for Min-Max Fairness Jacob D Abernethy, Pranjal Awasthi, Matthäus Kleindessner, Jamie Morgenstern, Chris Russell, Jie Zhang
ICML 2022 ActiveHedge: Hedge Meets Active Learning Bhuvesh Kumar, Jacob D Abernethy, Venkatesh Saligrama
NeurIPS 2022 Adaptive Oracle-Efficient Online Learning Guanghui Wang, Zihao Hu, Vidya Muthukumar, Jacob D. Abernethy
ICML 2021 A Modular Analysis of Provable Acceleration via Polyak’s Momentum: Training a Wide ReLU Network and a Deep Linear Network Jun-Kun Wang, Chi-Heng Lin, Jacob D Abernethy
NeurIPS 2021 Observation-Free Attacks on Stochastic Bandits Yinglun Xu, Bhuvesh Kumar, Jacob D. Abernethy
NeurIPS 2019 Learning Auctions with Robust Incentive Guarantees Jacob D. Abernethy, Rachel Cummings, Bhuvesh Kumar, Sam Taggart, Jamie H Morgenstern
NeurIPS 2019 Online Learning via the Differential Privacy Lens Jacob D. Abernethy, Young Hun Jung, Chansoo Lee, Audra McMillan, Ambuj Tewari
NeurIPS 2018 Acceleration Through Optimistic No-Regret Dynamics Jun-Kun Wang, Jacob D. Abernethy
COLT 2018 Faster Rates for Convex-Concave Games Jacob D. Abernethy, Kevin A. Lai, Kfir Y. Levy, Jun-Kun Wang
NeurIPS 2017 On Frank-Wolfe and Equilibrium Computation Jacob D. Abernethy, Jun-Kun Wang
NeurIPS 2016 Threshold Bandits, with and Without Censored Feedback Jacob D. Abernethy, Kareem Amin, Ruihao Zhu
NeurIPS 2015 A Market Framework for Eliciting Private Data Bo Waggoner, Rafael Frongillo, Jacob D. Abernethy
NeurIPS 2015 Fighting Bandits with a New Kind of Smoothness Jacob D. Abernethy, Chansoo Lee, Ambuj Tewari
COLT 2014 Online Linear Optimization via Smoothing Jacob D. Abernethy, Chansoo Lee, Abhinav Sinha, Ambuj Tewari
COLT 2012 A Characterization of Scoring Rules for Linear Properties Jacob D. Abernethy, Rafael M. Frongillo
NeurIPS 2011 A Collaborative Mechanism for Crowdsourcing Prediction Problems Jacob D. Abernethy, Rafael M. Frongillo
ALT 2010 A Regularization Approach to Metrical Task Systems Jacob D. Abernethy, Peter L. Bartlett, Niv Buchbinder, Isabelle Stanton
COLT 2010 Can We Learn to Gamble Efficiently? Jacob D. Abernethy
MLJ 2010 Graph Regularization Methods for Web Spam Detection Jacob D. Abernethy, Olivier Chapelle, Carlos Castillo
NeurIPS 2010 Repeated Games Against Budgeted Adversaries Jacob D. Abernethy, Manfred K. Warmuth
COLT 2009 A Stochastic View of Optimal Regret Through Minimax Duality Jacob D. Abernethy, Alekh Agarwal, Peter L. Bartlett, Alexander Rakhlin
COLT 2009 An Efficient Bandit Algorithm for sqrt(T) Regret in Online Multiclass Prediction? Jacob D. Abernethy, Alexander Rakhlin
COLT 2009 Beating the Adaptive Bandit with High Probability Jacob D. Abernethy, Alexander Rakhlin
COLT 2009 Minimax Games with Bandits Jacob D. Abernethy, Manfred K. Warmuth
COLT 2008 Competing in the Dark: An Efficient Algorithm for Bandit Linear Optimization Jacob D. Abernethy, Elad Hazan, Alexander Rakhlin
COLT 2008 Optimal Stragies and Minimax Lower Bounds for Online Convex Games Jacob D. Abernethy, Peter L. Bartlett, Alexander Rakhlin, Ambuj Tewari
COLT 2008 When Random Play Is Optimal Against an Adversary Jacob D. Abernethy, Manfred K. Warmuth, Joel Yellin
COLT 2007 Multitask Learning with Expert Advice Jacob D. Abernethy, Peter L. Bartlett, Alexander Rakhlin
ICML 2007 Online Discovery of Similarity Mappings Alexander Rakhlin, Jacob D. Abernethy, Peter L. Bartlett
COLT 2006 Continuous Experts and the Binning Algorithm Jacob D. Abernethy, John Langford, Manfred K. Warmuth