Adamczewski, Kamil

15 publications

ICML 2025 How to Train Your Multi-Exit Model? Analyzing the Impact of Training Strategies Piotr Kubaty, Bartosz Wójcik, Bartłomiej Tomasz Krzepkowski, Monika Michaluk, Tomasz Trzcinski, Jary Pomponi, Kamil Adamczewski
ICML 2025 Joint MoE Scaling Laws: Mixture of Experts Can Be Memory Efficient Jan Ludziejewski, Maciej Pióro, Jakub Krajewski, Maciej Stefaniak, Michał Krutul, Jan Małaśnicki, Marek Cygan, Piotr Sankowski, Kamil Adamczewski, Piotr Miłoś, Sebastian Jaszczur
ICLRW 2025 Joint MoE Scaling Laws: Mixture of Experts Can Be Memory Efficient Jan Ludziejewski, Maciej Pióro, Jakub Krajewski, Michał Krutul, Jan Małaśnicki, Maciej Stefaniak, Piotr Sankowski, Marek Cygan, Kamil Adamczewski, Piotr Miłoś, Sebastian Jaszczur
ECCV 2024 AdaGlimpse: Active Visual Exploration with Arbitrary Glimpse Position and Scale Adam Pardyl, Michał Wronka, Maciej Wołczyk, Kamil Adamczewski, Tomasz Trzcinski, Bartosz Zieliński
JAIR 2024 Differentially Private Neural Tangent Kernels (DP-NTK) for Privacy-Preserving Data Generation Yi Yang, Kamil Adamczewski, Xiaoxiao Li, Danica J. Sutherland, Mijung Park
NeurIPSW 2024 How Many Does It Take to Prune a Network: Comparing One-Shot vs. Iterative Pruning Regimes Tomasz Wojnar, Mikołaj Janusz, Luca Benini, Yawei Li, Kamil Adamczewski
ICML 2024 Scaling Laws for Fine-Grained Mixture of Experts Jan Ludziejewski, Jakub Krajewski, Kamil Adamczewski, Maciej Pióro, Michał Krutul, Szymon Antoniak, Kamil Ciebiera, Krystian Król, Tomasz Odrzygóźdź, Piotr Sankowski, Marek Cygan, Sebastian Jaszczur
ICML 2022 Hermite Polynomial Features for Private Data Generation Margarita Vinaroz, Mohammad-Amin Charusaie, Frederik Harder, Kamil Adamczewski, Mi Jung Park
CoRL 2022 LiDAR Line Selection with Spatially-Aware Shapley Value for Cost-Efficient Depth Completion Kamil Adamczewski, Christos Sakaridis, Vaishakh Patil, Luc Van Gool
CVPR 2022 Revisiting Random Channel Pruning for Neural Network Compression Yawei Li, Kamil Adamczewski, Wen Li, Shuhang Gu, Radu Timofte, Luc Van Gool
AISTATS 2021 DP-MERF: Differentially Private Mean Embeddings with RandomFeatures for Practical Privacy-Preserving Data Generation Frederik Harder, Kamil Adamczewski, Mijung Park
AISTATS 2021 Dirichlet Pruning for Convolutional Neural Networks Kamil Adamczewski, Mijung Park
AAAI 2020 Radial and Directional Posteriors for Bayesian Deep Learning ChangYong Oh, Kamil Adamczewski, Mijung Park
ICCV 2015 Discrete Tabu Search for Graph Matching Kamil Adamczewski, Yumin Suh, Kyoung Mu Lee
CVPR 2015 Subgraph Matching Using Compactness Prior for Robust Feature Correspondence Yumin Suh, Kamil Adamczewski, Kyoung Mu Lee