ML Anthology
Authors
Search
About
Adel, Tameem
17 publications
JAIR
2025
Adaptive Few-Shot Class-Incremental Learning via Latent Variable Models
Tameem Adel
JAIR
2024
Similarity-Based Adaptation for Task-Aware and Task-Free Continual Learning
Tameem Adel
ICLR
2021
Getting a CLUE: A Method for Explaining Uncertainty Estimates
Javier Antoran
,
Umang Bhatt
,
Tameem Adel
,
Adrian Weller
,
José Miguel Hernández-Lobato
NeurIPSW
2021
Semi-Supervised Multiple Instance Learning Using Variational Auto-Encoders
Ali Nihat Uzunalioglu
,
Tameem Adel
,
Jakub Mikolaj Tomczak
ICLR
2020
Conditional Learning of Fair Representations
Han Zhao
,
Amanda Coston
,
Tameem Adel
,
Geoffrey J. Gordon
ICLR
2020
Continual Learning with Adaptive Weights (CLAW)
Tameem Adel
,
Han Zhao
,
Richard E. Turner
NeurIPSW
2019
Exploring Properties of the Deep Image Prior
Andreas Kattamis
,
Tameem Adel
,
Adrian Weller
AAAI
2019
One-Network Adversarial Fairness
Tameem Adel
,
Isabel Valera
,
Zoubin Ghahramani
,
Adrian Weller
ICML
2019
TibGM: A Transferable and Information-Based Graphical Model Approach for Reinforcement Learning
Tameem Adel
,
Adrian Weller
ICML
2018
Discovering Interpretable Representations for Both Deep Generative and Discriminative Models
Tameem Adel
,
Zoubin Ghahramani
,
Adrian Weller
AAAI
2017
Learning Bayesian Networks with Incomplete Data by Augmentation
Tameem Adel
,
Cassio P. de Campos
AAAI
2017
Unsupervised Domain Adaptation with a Relaxed Covariate Shift Assumption
Tameem Adel
,
Han Zhao
,
Alexander Wong
ICLR
2017
Visualizing Deep Neural Network Decisions: Prediction Difference Analysis
Luisa M. Zintgraf
,
Taco S. Cohen
,
Tameem Adel
,
Max Welling
ICML
2016
Collapsed Variational Inference for Sum-Product Networks
Han Zhao
,
Tameem Adel
,
Geoff Gordon
,
Brandon Amos
AAAI
2015
A Probabilistic Covariate Shift Assumption for Domain Adaptation
Tameem Adel
,
Alexander Wong
UAI
2015
Learning the Structure of Sum-Product Networks via an SVD-Based Algorithm
Tameem Adel
,
David Balduzzi
,
Ali Ghodsi
UAI
2013
Generative Multiple-Instance Learning Models for Quantitative Electromyography
Tameem Adel
,
Benn Smith
,
Ruth Urner
,
Daniel W. Stashuk
,
Daniel J. Lizotte