ML Anthology
Authors
Search
About
Agarwal, Naman
29 publications
TMLR
2025
How Far Away Are Truly Hyperparameter-Free Learning Algorithms?
Priya Kasimbeg
,
Vincent Roulet
,
Naman Agarwal
,
Sourabh Medapati
,
Fabian Pedregosa
,
Atish Agarwala
,
George E. Dahl
ICML
2025
Provable Length Generalization in Sequence Prediction via Spectral Filtering
Annie Marsden
,
Evan Dogariu
,
Naman Agarwal
,
Xinyi Chen
,
Daniel Suo
,
Elad Hazan
ICML
2024
Improved Differentially Private and Lazy Online Convex Optimization: Lower Regret Without Smoothness Requirements
Naman Agarwal
,
Satyen Kale
,
Karan Singh
,
Abhradeep Guha Thakurta
ICMLW
2024
Spectral State Space Models
Naman Agarwal
,
Daniel Suo
,
Xinyi Chen
,
Elad Hazan
NeurIPSW
2023
Adaptive Gradient Methods at the Edge of Stability
Jeremy Cohen
,
Behrooz Ghorbani
,
Shankar Krishnan
,
Naman Agarwal
,
Sourabh Medapati
,
Michal Badura
,
Daniel Suo
,
Zachary Nado
,
George E. Dahl
,
Justin Gilmer
L4DC
2023
Best of Both Worlds in Online Control: Competitive Ratio and Policy Regret
Gautam Goel
,
Naman Agarwal
,
Karan Singh
,
Elad Hazan
COLT
2023
Differentially Private and Lazy Online Convex Optimization
Naman Agarwal
,
Satyen Kale
,
Karan Singh
,
Abhradeep Thakurta
ICML
2023
Multi-User Reinforcement Learning with Low Rank Rewards
Dheeraj Mysore Nagaraj
,
Suhas S Kowshik
,
Naman Agarwal
,
Praneeth Netrapalli
,
Prateek Jain
ALT
2023
Variance-Reduced Conservative Policy Iteration
Naman Agarwal
,
Brian Bullins
,
Karan Singh
ALT
2022
Efficient Methods for Online Multiclass Logistic Regression
Naman Agarwal
,
Satyen Kale
,
Julian Zimmert
ICLR
2022
Online Target Q-Learning with Reverse Experience Replay: Efficiently Finding the Optimal Policy for Linear MDPs
Naman Agarwal
,
Syomantak Chaudhuri
,
Prateek Jain
,
Dheeraj Mysore Nagaraj
,
Praneeth Netrapalli
COLT
2022
Pushing the Efficiency-Regret Pareto Frontier for Online Learning of Portfolios and Quantum States
Julian Zimmert
,
Naman Agarwal
,
Satyen Kale
ALT
2021
A Deep Conditioning Treatment of Neural Networks
Naman Agarwal
,
Pranjal Awasthi
,
Satyen Kale
ICML
2021
A Regret Minimization Approach to Iterative Learning Control
Naman Agarwal
,
Elad Hazan
,
Anirudha Majumdar
,
Karan Singh
ICML
2021
Acceleration via Fractal Learning Rate Schedules
Naman Agarwal
,
Surbhi Goel
,
Cyril Zhang
NeurIPS
2021
The Skellam Mechanism for Differentially Private Federated Learning
Naman Agarwal
,
Peter Kairouz
,
Ziyu Liu
ICML
2020
Boosting for Control of Dynamical Systems
Naman Agarwal
,
Nataly Brukhim
,
Elad Hazan
,
Zhou Lu
ICLR
2020
Extreme Tensoring for Low-Memory Preconditioning
Xinyi Chen
,
Naman Agarwal
,
Elad Hazan
,
Cyril Zhang
,
Yi Zhang
ALT
2020
Leverage Score Sampling for Faster Accelerated Regression and ERM
Naman Agarwal
,
Sham Kakade
,
Rahul Kidambi
,
Yin-Tat Lee
,
Praneeth Netrapalli
,
Aaron Sidford
ICLR
2020
Revisiting the Generalization of Adaptive Gradient Methods
Naman Agarwal
,
Rohan Anil
,
Elad Hazan
,
Tomer Koren
,
Cyril Zhang
NeurIPS
2020
Stochastic Optimization with Laggard Data Pipelines
Naman Agarwal
,
Rohan Anil
,
Tomer Koren
,
Kunal Talwar
,
Cyril Zhang
ICML
2019
Efficient Full-Matrix Adaptive Regularization
Naman Agarwal
,
Brian Bullins
,
Xinyi Chen
,
Elad Hazan
,
Karan Singh
,
Cyril Zhang
,
Yi Zhang
COLT
2019
Learning in Non-Convex Games with an Optimization Oracle
Naman Agarwal
,
Alon Gonen
,
Elad Hazan
NeurIPS
2019
Logarithmic Regret for Online Control
Naman Agarwal
,
Elad Hazan
,
Karan Singh
ICML
2019
Online Control with Adversarial Disturbances
Naman Agarwal
,
Brian Bullins
,
Elad Hazan
,
Sham Kakade
,
Karan Singh
COLT
2018
Lower Bounds for Higher-Order Convex Optimization
Naman Agarwal
,
Elad Hazan
NeurIPS
2018
cpSGD: Communication-Efficient and Differentially-Private Distributed SGD
Naman Agarwal
,
Ananda Theertha Suresh
,
Felix Xinnan X Yu
,
Sanjiv Kumar
,
Brendan McMahan
JMLR
2017
Second-Order Stochastic Optimization for Machine Learning in Linear Time
Naman Agarwal
,
Brian Bullins
,
Elad Hazan
ICML
2017
The Price of Differential Privacy for Online Learning
Naman Agarwal
,
Karan Singh