Amos, Brandon

58 publications

JAIR 2026 Score Function Gradient Estimation to Widen the Applicability of Decision-Focused Learning Mattia Silvestri, Senne Berden, Gaetano Signorelli, Ali Irfan Mahmutogullari, Jayanta Mandi, Brandon Amos, Tias Guns, Michele Lombardi
ICML 2025 Adjoint Sampling: Highly Scalable Diffusion Samplers via Adjoint Matching Aaron J Havens, Benjamin Kurt Miller, Bing Yan, Carles Domingo-Enrich, Anuroop Sriram, Daniel S. Levine, Brandon M Wood, Bin Hu, Brandon Amos, Brian Karrer, Xiang Fu, Guan-Horng Liu, Ricky T. Q. Chen
ICLRW 2025 Adjoint Sampling: Highly Scalable Diffusion Samplers via Adjoint Matching Aaron J Havens, Benjamin Kurt Miller, Bing Yan, Carles Domingo-Enrich, Anuroop Sriram, Daniel S. Levine, Brandon M Wood, Bin Hu, Brandon Amos, Brian Karrer, Xiang Fu, Guan-Horng Liu, Ricky T. Q. Chen
NeurIPS 2025 AdvPrefix: An Objective for Nuanced LLM Jailbreaks Sicheng Zhu, Brandon Amos, Yuandong Tian, Chuan Guo, Ivan Evtimov
ICML 2025 AdvPrompter: Fast Adaptive Adversarial Prompting for LLMs Anselm Paulus, Arman Zharmagambetov, Chuan Guo, Brandon Amos, Yuandong Tian
NeurIPS 2025 AlgoTune: Can Language Models Speed up General-Purpose Numerical Programs? Ori Press, Brandon Amos, Haoyu Zhao, Yikai Wu, Samuel Ainsworth, Dominik Krupke, Patrick Kidger, Touqir Sajed, Bartolomeo Stellato, Jisun Park, Nathanael Bosch, Eli Meril, Albert Steppi, Arman Zharmagambetov, Fangzhao Zhang, David Pérez-Piñeiro, Alberto Mercurio, Ni Zhan, Talor Abramovich, Kilian Lieret, Hanlin Zhang, Shirley Huang, Matthias Bethge, Ofir Press
ICLR 2025 Exact Byte-Level Probabilities from Tokenized Language Models for FIM-Tasks and Model Ensembles Buu Phan, Brandon Amos, Itai Gat, Marton Havasi, Matthew J. Muckley, Karen Ullrich
ICLR 2025 Meta Flow Matching: Integrating Vector Fields on the Wasserstein Manifold Lazar Atanackovic, Xi Zhang, Brandon Amos, Mathieu Blanchette, Leo J Lee, Yoshua Bengio, Alexander Tong, Kirill Neklyudov
ICML 2025 Wasserstein Flow Matching: Generative Modeling over Families of Distributions Doron Haviv, Aram-Alexandre Pooladian, Dana Pe’Er, Brandon Amos
JMLR 2024 Learning to Warm-Start Fixed-Point Optimization Algorithms Rajiv Sambharya, Georgina Hall, Brandon Amos, Bartolomeo Stellato
ICMLW 2024 Meta Flow Matching: Integrating Vector Fields on the Wasserstein Manifold Lazar Atanackovic, Xi Zhang, Brandon Amos, Mathieu Blanchette, Leo J Lee, Yoshua Bengio, Alexander Tong, Kirill Neklyudov
UAI 2024 Neural Optimal Transport with Lagrangian Costs Aram-Alexandre Pooladian, Carles Domingo-Enrich, Ricky T. Q. Chen, Brandon Amos
NeurIPS 2024 Stochastic Optimal Control Matching Carles Domingo-Enrich, Jiequn Han, Brandon Amos, Joan Bruna, Ricky T. Q. Chen
NeurIPS 2024 Unlocking Tokens as Data Points for Generalization Bounds on Larger Language Models Sanae Lotfi, Yilun Kuang, Brandon Amos, Micah Goldblum, Marc Finzi, Andrew Gordon Wilson
ICMLW 2024 Unlocking Tokens as Data Points for Generalization Bounds on Larger Language Models Sanae Lotfi, Yilun Kuang, Marc Anton Finzi, Brandon Amos, Micah Goldblum, Andrew Gordon Wilson
L4DC 2023 End-to-End Learning to Warm-Start for Real-Time Quadratic Optimization Rajiv Sambharya, Georgina Hall, Brandon Amos, Bartolomeo Stellato
ICMLW 2023 Koopman Constrained Policy Optimization: A Koopman Operator Theoretic Method for Differentiable Optimal Control in Robotics Matthew Retchin, Brandon Amos, Steven Brunton, Shuran Song
NeurIPS 2023 Landscape Surrogate: Learning Decision Losses for Mathematical Optimization Under Partial Information Arman Zharmagambetov, Brandon Amos, Aaron Ferber, Taoan Huang, Bistra Dilkina, Yuandong Tian
ICMLW 2023 Landscape Surrogate: Learning Decision Losses for Mathematical Optimization Under Partial Information Arman Zharmagambetov, Brandon Amos, Aaron M Ferber, Taoan Huang, Bistra Dilkina, Yuandong Tian
ICMLW 2023 Landscape Surrogate: Learning Decision Losses for Mathematical Optimization Under Partial Information Arman Zharmagambetov, Brandon Amos, Aaron M Ferber, Taoan Huang, Bistra Dilkina, Yuandong Tian
ICML 2023 Meta Optimal Transport Brandon Amos, Giulia Luise, Samuel Cohen, Ievgen Redko
ICML 2023 Multisample Flow Matching: Straightening Flows with Minibatch Couplings Aram-Alexandre Pooladian, Heli Ben-Hamu, Carles Domingo-Enrich, Brandon Amos, Yaron Lipman, Ricky T. Q. Chen
ICMLW 2023 Neural Optimal Transport with Lagrangian Costs Aram-Alexandre Pooladian, Carles Domingo-Enrich, Ricky T. Q. Chen, Brandon Amos
ICLR 2023 On Amortizing Convex Conjugates for Optimal Transport Brandon Amos
ICML 2023 Semi-Supervised Offline Reinforcement Learning with Action-Free Trajectories Qinqing Zheng, Mikael Henaff, Brandon Amos, Aditya Grover
ICLRW 2023 Semi-Supervised Offline Reinforcement Learning with Action-Free Trajectories Qinqing Zheng, Mikael Henaff, Brandon Amos, Aditya Grover
NeurIPS 2023 TaskMet: Task-Driven Metric Learning for Model Learning Dishank Bansal, Ricky T. Q. Chen, Mustafa Mukadam, Brandon Amos
ICMLW 2023 TaskMet: Task-Driven Metric Learning for Model Learning Dishank Bansal, Ricky T. Q. Chen, Mustafa Mukadam, Brandon Amos
FnTML 2023 Tutorial on Amortized Optimization Brandon Amos
ICLR 2022 Cross-Domain Imitation Learning via Optimal Transport Arnaud Fickinger, Samuel Cohen, Stuart Russell, Brandon Amos
ICML 2022 Matching Normalizing Flows and Probability Paths on Manifolds Heli Ben-Hamu, Samuel Cohen, Joey Bose, Brandon Amos, Maximillian Nickel, Aditya Grover, Ricky T. Q. Chen, Yaron Lipman
NeurIPS 2022 Nocturne: A Scalable Driving Benchmark for Bringing Multi-Agent Learning One Step Closer to the Real World Eugene Vinitsky, Nathan Lichtlé, Xiaomeng Yang, Brandon Amos, Jakob Foerster
NeurIPS 2022 Semi-Discrete Normalizing Flows Through Differentiable Tessellation Ricky T. Q. Chen, Brandon Amos, Maximilian Nickel
ICLRW 2022 Semi-Discrete Normalizing Flows Through Differentiable Voronoi Tessellation Ricky T. Q. Chen, Brandon Amos, Maximilian Nickel
NeurIPS 2022 Theseus: A Library for Differentiable Nonlinear Optimization Luis Pineda, Taosha Fan, Maurizio Monge, Shobha Venkataraman, Paloma Sodhi, Ricky T. Q. Chen, Joseph Ortiz, Daniel DeTone, Austin Wang, Stuart Anderson, Jing Dong, Brandon Amos, Mustafa Mukadam
AISTATS 2021 Aligning Time Series on Incomparable Spaces Samuel Cohen, Giulia Luise, Alexander Terenin, Brandon Amos, Marc Deisenroth
ICML 2021 CombOptNet: Fit the Right NP-Hard Problem by Learning Integer Programming Constraints Anselm Paulus, Michal Rolinek, Vit Musil, Brandon Amos, Georg Martius
NeurIPSW 2021 Cross-Domain Imitation Learning via Optimal Transport Arnaud Fickinger, Samuel Cohen, Stuart Russell, Brandon Amos
NeurIPSW 2021 Imitation Learning from Pixel Observations for Continuous Control Samuel Cohen, Brandon Amos, Marc Peter Deisenroth, Mikael Henaff, Eugene Vinitsky, Denis Yarats
AAAI 2021 Improving Sample Efficiency in Model-Free Reinforcement Learning from Images Denis Yarats, Amy Zhang, Ilya Kostrikov, Brandon Amos, Joelle Pineau, Rob Fergus
ICLR 2021 Learning Neural Event Functions for Ordinary Differential Equations Ricky T. Q. Chen, Brandon Amos, Maximilian Nickel
ICMLW 2021 Neural Fixed-Point Acceleration for Convex Optimization Shobha Venkataraman, Brandon Amos
ICLR 2021 Neural Spatio-Temporal Point Processes Ricky T. Q. Chen, Brandon Amos, Maximilian Nickel
L4DC 2021 On the Model-Based Stochastic Value Gradient for Continuous Reinforcement Learning Brandon Amos, Samuel Stanton, Denis Yarats, Andrew Gordon Wilson
ICML 2021 Riemannian Convex Potential Maps Samuel Cohen, Brandon Amos, Yaron Lipman
NeurIPS 2021 Scalable Online Planning via Reinforcement Learning Fine-Tuning Arnaud Fickinger, Hengyuan Hu, Brandon Amos, Stuart J. Russell, Noam Brown
NeurIPSW 2020 Fit the Right NP-Hard Problem: End-to-End Learning of Integer Programming Constraints Anselm Paulus, Michal Rolinek, Vít Musil, Brandon Amos, Georg Martius
ICLR 2020 Objective Mismatch in Model-Based Reinforcement Learning Nathan Lambert, Brandon Amos, Omry Yadan, Roberto Calandra
L4DC 2020 Objective Mismatch in Model-Based Reinforcement Learning Nathan Lambert, Brandon Amos, Omry Yadan, Roberto Calandra
ICML 2020 The Differentiable Cross-Entropy Method Brandon Amos, Denis Yarats
NeurIPS 2019 Differentiable Convex Optimization Layers Akshay Agrawal, Brandon Amos, Shane Barratt, Stephen Boyd, Steven Diamond, J. Zico Kolter
NeurIPS 2018 Depth-Limited Solving for Imperfect-Information Games Noam Brown, Tuomas Sandholm, Brandon Amos
NeurIPS 2018 Differentiable MPC for End-to-End Planning and Control Brandon Amos, Ivan Jimenez, Jacob Sacks, Byron Boots, J. Zico Kolter
ICLR 2018 Learning Awareness Models Brandon Amos, Laurent Dinh, Serkan Cabi, Thomas Rothörl, Sergio Gómez Colmenarejo, Alistair Muldal, Tom Erez, Yuval Tassa, Nando de Freitas, Misha Denil
ICML 2017 Input Convex Neural Networks Brandon Amos, Lei Xu, J. Zico Kolter
ICML 2017 OptNet: Differentiable Optimization as a Layer in Neural Networks Brandon Amos, J. Zico Kolter
NeurIPS 2017 Task-Based End-to-End Model Learning in Stochastic Optimization Priya Donti, Brandon Amos, J. Zico Kolter
ICML 2016 Collapsed Variational Inference for Sum-Product Networks Han Zhao, Tameem Adel, Geoff Gordon, Brandon Amos