ML Anthology
Authors
Search
About
Arbel, Michael
28 publications
NeurIPS
2025
EquiTabPFN: A Target-Permutation Equivariant Prior Fitted Network
Michael Arbel
,
David Salinas
,
Frank Hutter
ICCV
2025
LUDVIG: Learning-Free Uplifting of 2D Visual Features to Gaussian Splatting Scenes
Juliette Marrie
,
Romain Menegaux
,
Michael Arbel
,
Diane Larlus
,
Julien Mairal
NeurIPS
2025
Learning Theory for Kernel Bilevel Optimization
Fares El Khoury
,
Edouard Pauwels
,
Samuel Vaiter
,
Michael Arbel
NeurIPS
2025
MAP Estimation with Denoisers: Convergence Rates and Guarantees
Scott Pesme
,
Giacomo Meanti
,
Michael Arbel
,
Julien Mairal
ICCV
2025
Unsupervised Imaging Inverse Problems with Diffusion Distribution Matching
Giacomo Meanti
,
Thomas Ryckeboer
,
Michael Arbel
,
Julien Mairal
NeurIPS
2024
Functional Bilevel Optimization for Machine Learning
Ieva Petrulionyte
,
Julien Mairal
,
Michael Arbel
TMLR
2024
On Good Practices for Task-Specific Distillation of Large Pretrained Visual Models
Juliette Marrie
,
Michael Arbel
,
Julien Mairal
,
Diane Larlus
NeurIPSW
2023
Improving Deep Ensembles Without Communication
Konstantinos Pitas
,
Michael Arbel
,
Julyan Arbel
NeurIPS
2023
Rethinking Gauss-Newton for Learning Over-Parameterized Models
Michael Arbel
,
Romain Menegaux
,
Pierre Wolinski
CVPR
2023
SLACK: Stable Learning of Augmentations with Cold-Start and KL Regularization
Juliette Marrie
,
Michael Arbel
,
Diane Larlus
,
Julien Mairal
AISTATS
2022
Towards an Understanding of Default Policies in Multitask Policy Optimization
Ted Moskovitz
,
Michael Arbel
,
Jack Parker-Holder
,
Aldo Pacchiano
ICLR
2022
Amortized Implicit Differentiation for Stochastic Bilevel Optimization
Michael Arbel
,
Julien Mairal
ICML
2022
Continual Repeated Annealed Flow Transport Monte Carlo
Alex Matthews
,
Michael Arbel
,
Danilo Jimenez Rezende
,
Arnaud Doucet
NeurIPSW
2022
Fair Synthetic Data Does Not Necessarily Lead to Fair Models
Yam Eitan
,
Nathan Cavaglione
,
Michael Arbel
,
Samuel Cohen
NeurIPS
2022
Non-Convex Bilevel Games with Critical Point Selection Maps
Michael Arbel
,
Julien Mairal
ICML
2021
Annealed Flow Transport Monte Carlo
Michael Arbel
,
Alex Matthews
,
Arnaud Doucet
ICLR
2021
Efficient Wasserstein Natural Gradients for Reinforcement Learning
Ted Moskovitz
,
Michael Arbel
,
Ferenc Huszar
,
Arthur Gretton
ICLR
2021
Generalized Energy Based Models
Michael Arbel
,
Liang Zhou
,
Arthur Gretton
NeurIPS
2021
KALE Flow: A Relaxed KL Gradient Flow for Probabilities with Disjoint Support
Pierre Glaser
,
Michael Arbel
,
Arthur Gretton
NeurIPS
2021
Tactical Optimism and Pessimism for Deep Reinforcement Learning
Ted Moskovitz
,
Jack Parker-Holder
,
Aldo Pacchiano
,
Michael Arbel
,
Michael I. Jordan
ICLR
2021
The Unreasonable Effectiveness of Patches in Deep Convolutional Kernels Methods
Louis Thiry
,
Michael Arbel
,
Eugene Belilovsky
,
Edouard Oyallon
NeurIPS
2020
A Non-Asymptotic Analysis for Stein Variational Gradient Descent
Anna Korba
,
Adil Salim
,
Michael Arbel
,
Giulia Luise
,
Arthur Gretton
ICLR
2020
Kernelized Wasserstein Natural Gradient
Michael Arbel
,
Arthur Gretton
,
Wuchen Li
,
Guido Montufar
NeurIPS
2019
Maximum Mean Discrepancy Gradient Flow
Michael Arbel
,
Anna Korba
,
Adil Salim
,
Arthur Gretton
ICLR
2018
Demystifying MMD GANs
Mikołaj Bińkowski
,
Danica J. Sutherland
,
Michael Arbel
,
Arthur Gretton
AISTATS
2018
Efficient and Principled Score Estimation with Nyström Kernel Exponential Families
Danica J. Sutherland
,
Heiko Strathmann
,
Michael Arbel
,
Arthur Gretton
AISTATS
2018
Kernel Conditional Exponential Family
Michael Arbel
,
Arthur Gretton
NeurIPS
2018
On Gradient Regularizers for MMD GANs
Michael Arbel
,
Danica J. Sutherland
,
Mikołaj Bińkowski
,
Arthur Gretton