ML Anthology
Authors
Search
About
Archambeau, Cedric
34 publications
FnTML
2025
Hyperparameter Optimization in Machine Learning
Luca Franceschi
,
Michele Donini
,
Valerio Perrone
,
Aaron Klein
,
Cédric Archambeau
,
Matthias W. Seeger
,
Massimiliano Pontil
,
Paolo Frasconi
ICML
2024
Explaining Probabilistic Models with Distributional Values
Luca Franceschi
,
Michele Donini
,
Cedric Archambeau
,
Matthias Seeger
MLOSS
2024
Fortuna: A Library for Uncertainty Quantification in Deep Learning
Gianluca Detommaso
,
Alberto Gasparin
,
Michele Donini
,
Matthias Seeger
,
Andrew Gordon Wilson
,
Cedric Archambeau
TMLR
2024
On the Choice of Learning Rate for Local SGD
Lukas Balles
,
Prabhu Teja S
,
Cedric Archambeau
TMLR
2024
Structural Pruning of Pre-Trained Language Models via Neural Architecture Search
Aaron Klein
,
Jacek Golebiowski
,
Xingchen Ma
,
Valerio Perrone
,
Cedric Archambeau
NeurIPSW
2023
A Negative Result on Gradient Matching for Selective Backprop
Lukas Balles
,
Cedric Archambeau
,
Giovanni Zappella
ICLRW
2023
Explaining Multiclass Classifiers with Categorical Values: A Case Study in Radiography
Luca Franceschi
,
Cemre Zor
,
Muhammad Bilal Zafar
,
Gianluca Detommaso
,
Cedric Archambeau
,
Tamas Madl
,
Michele Donini
,
Matthias Seeger
ICML
2023
Optimizing Hyperparameters with Conformal Quantile Regression
David Salinas
,
Jacek Golebiowski
,
Aaron Klein
,
Matthias Seeger
,
Cedric Archambeau
ICLR
2023
PASHA: Efficient HPO and NAS with Progressive Resource Allocation
Ondrej Bohdal
,
Lukas Balles
,
Martin Wistuba
,
Beyza Ermis
,
Cedric Archambeau
,
Giovanni Zappella
AutoML
2022
Automatic Termination for Hyperparameter Optimization
Anastasia Makarova
,
Huibin Shen
,
Valerio Perrone
,
Aaron Klein
,
Jean Baptiste Faddoul
,
Andreas Krause
,
Matthias Seeger
,
Cedric Archambeau
CVPRW
2022
Continual Learning with Transformers for Image Classification
Beyza Ermis
,
Giovanni Zappella
,
Martin Wistuba
,
Aditya Rawal
,
Cédric Archambeau
NeurIPSW
2022
Differentially Private Gradient Boosting on Linear Learners for Tabular Data
Saeyoung Rho
,
Cedric Archambeau
,
Sergul Aydore
,
Beyza Ermis
,
Michael Kearns
,
Aaron Roth
,
Shuai Tang
,
Yu-Xiang Wang
,
Steven Wu
NeurIPS
2022
Memory Efficient Continual Learning with Transformers
Beyza Ermis
,
Giovanni Zappella
,
Martin Wistuba
,
Aditya Rawal
,
Cedric Archambeau
NeurIPS
2022
Private Synthetic Data for Multitask Learning and Marginal Queries
Giuseppe Vietri
,
Cedric Archambeau
,
Sergul Aydore
,
William Brown
,
Michael J. Kearns
,
Aaron Roth
,
Ankit Siva
,
Shuai Tang
,
Steven Z. Wu
AutoML
2022
Syne Tune: A Library for Large Scale Hyperparameter Tuning and Reproducible Research
David Salinas
,
Matthias Seeger
,
Aaron Klein
,
Valerio Perrone
,
Martin Wistuba
,
Cedric Archambeau
AISTATS
2021
Hyperparameter Transfer Learning with Adaptive Complexity
Samuel Horváth
,
Aaron Klein
,
Peter Richtarik
,
Cedric Archambeau
ICMLW
2021
A Resource-Efficient Method for Repeated HPO and NAS Problems
Giovanni Zappella
,
David Salinas
,
Cedric Archambeau
ICML
2021
BORE: Bayesian Optimization by Density-Ratio Estimation
Louis C Tiao
,
Aaron Klein
,
Matthias W Seeger
,
Edwin V. Bonilla
,
Cedric Archambeau
,
Fabio Ramos
ICMLW
2021
Dynamic Pruning of a Neural Network via Gradient Signal-to-Noise Ratio
Julien Niklas Siems
,
Aaron Klein
,
Cedric Archambeau
,
Maren Mahsereci
NeurIPSW
2021
Gradient-Matching Coresets for Continual Learning
Lukas Balles
,
Giovanni Zappella
,
Cedric Archambeau
UAI
2021
Towards Robust Episodic Meta-Learning
Beyza Ermis
,
Giovanni Zappella
,
Cédric Archambeau
ICML
2020
LEEP: A New Measure to Evaluate Transferability of Learned Representations
Cuong Nguyen
,
Tal Hassner
,
Matthias Seeger
,
Cedric Archambeau
NeurIPS
2019
Learning Search Spaces for Bayesian Optimization: Another View of Hyperparameter Transfer Learning
Valerio Perrone
,
Huibin Shen
,
Matthias W Seeger
,
Cedric Archambeau
,
Rodolphe Jenatton
NeurIPS
2018
Scalable Hyperparameter Transfer Learning
Valerio Perrone
,
Rodolphe Jenatton
,
Matthias W Seeger
,
Cedric Archambeau
ICML
2017
Bayesian Optimization with Tree-Structured Dependencies
Rodolphe Jenatton
,
Cedric Archambeau
,
Javier González
,
Matthias Seeger
ICML
2016
Adaptive Algorithms for Online Convex Optimization with Long-Term Constraints
Rodolphe Jenatton
,
Jim Huang
,
Cedric Archambeau
ECML-PKDD
2013
Error Prediction with Partial Feedback
William Darling
,
Cédric Archambeau
,
Shachar Mirkin
,
Guillaume Bouchard
UAI
2012
Plackett-Luce Regression: A New Bayesian Model for Polychotomous Data
Cédric Archambeau
,
Francois Caron
AISTATS
2011
Robust Bayesian Matrix Factorisation
Balaji Lakshminarayanan
,
Guillaume Bouchard
,
Cedric Archambeau
NeurIPS
2011
Sparse Bayesian Multi-Task Learning
Shengbo Guo
,
Onno Zoeter
,
Cédric Archambeau
ICML
2009
A Stochastic Memoizer for Sequence Data
Frank D. Wood
,
Cédric Archambeau
,
Jan Gasthaus
,
Lancelot James
,
Yee Whye Teh
NeurIPS
2008
Sparse Probabilistic Projections
Cédric Archambeau
,
Francis R. Bach
NeurIPS
2007
Variational Inference for Diffusion Processes
Cédric Archambeau
,
Manfred Opper
,
Yuan Shen
,
Dan Cornford
,
John S. Shawe-taylor
ICML
2006
Robust Probabilistic Projections
Cédric Archambeau
,
Nicolas Delannay
,
Michel Verleysen