Archambeau, Cedric

34 publications

FnTML 2025 Hyperparameter Optimization in Machine Learning Luca Franceschi, Michele Donini, Valerio Perrone, Aaron Klein, Cédric Archambeau, Matthias W. Seeger, Massimiliano Pontil, Paolo Frasconi
ICML 2024 Explaining Probabilistic Models with Distributional Values Luca Franceschi, Michele Donini, Cedric Archambeau, Matthias Seeger
MLOSS 2024 Fortuna: A Library for Uncertainty Quantification in Deep Learning Gianluca Detommaso, Alberto Gasparin, Michele Donini, Matthias Seeger, Andrew Gordon Wilson, Cedric Archambeau
TMLR 2024 On the Choice of Learning Rate for Local SGD Lukas Balles, Prabhu Teja S, Cedric Archambeau
TMLR 2024 Structural Pruning of Pre-Trained Language Models via Neural Architecture Search Aaron Klein, Jacek Golebiowski, Xingchen Ma, Valerio Perrone, Cedric Archambeau
NeurIPSW 2023 A Negative Result on Gradient Matching for Selective Backprop Lukas Balles, Cedric Archambeau, Giovanni Zappella
ICLRW 2023 Explaining Multiclass Classifiers with Categorical Values: A Case Study in Radiography Luca Franceschi, Cemre Zor, Muhammad Bilal Zafar, Gianluca Detommaso, Cedric Archambeau, Tamas Madl, Michele Donini, Matthias Seeger
ICML 2023 Optimizing Hyperparameters with Conformal Quantile Regression David Salinas, Jacek Golebiowski, Aaron Klein, Matthias Seeger, Cedric Archambeau
ICLR 2023 PASHA: Efficient HPO and NAS with Progressive Resource Allocation Ondrej Bohdal, Lukas Balles, Martin Wistuba, Beyza Ermis, Cedric Archambeau, Giovanni Zappella
AutoML 2022 Automatic Termination for Hyperparameter Optimization Anastasia Makarova, Huibin Shen, Valerio Perrone, Aaron Klein, Jean Baptiste Faddoul, Andreas Krause, Matthias Seeger, Cedric Archambeau
CVPRW 2022 Continual Learning with Transformers for Image Classification Beyza Ermis, Giovanni Zappella, Martin Wistuba, Aditya Rawal, Cédric Archambeau
NeurIPSW 2022 Differentially Private Gradient Boosting on Linear Learners for Tabular Data Saeyoung Rho, Cedric Archambeau, Sergul Aydore, Beyza Ermis, Michael Kearns, Aaron Roth, Shuai Tang, Yu-Xiang Wang, Steven Wu
NeurIPS 2022 Memory Efficient Continual Learning with Transformers Beyza Ermis, Giovanni Zappella, Martin Wistuba, Aditya Rawal, Cedric Archambeau
NeurIPS 2022 Private Synthetic Data for Multitask Learning and Marginal Queries Giuseppe Vietri, Cedric Archambeau, Sergul Aydore, William Brown, Michael J. Kearns, Aaron Roth, Ankit Siva, Shuai Tang, Steven Z. Wu
AutoML 2022 Syne Tune: A Library for Large Scale Hyperparameter Tuning and Reproducible Research David Salinas, Matthias Seeger, Aaron Klein, Valerio Perrone, Martin Wistuba, Cedric Archambeau
AISTATS 2021 Hyperparameter Transfer Learning with Adaptive Complexity Samuel Horváth, Aaron Klein, Peter Richtarik, Cedric Archambeau
ICMLW 2021 A Resource-Efficient Method for Repeated HPO and NAS Problems Giovanni Zappella, David Salinas, Cedric Archambeau
ICML 2021 BORE: Bayesian Optimization by Density-Ratio Estimation Louis C Tiao, Aaron Klein, Matthias W Seeger, Edwin V. Bonilla, Cedric Archambeau, Fabio Ramos
ICMLW 2021 Dynamic Pruning of a Neural Network via Gradient Signal-to-Noise Ratio Julien Niklas Siems, Aaron Klein, Cedric Archambeau, Maren Mahsereci
NeurIPSW 2021 Gradient-Matching Coresets for Continual Learning Lukas Balles, Giovanni Zappella, Cedric Archambeau
UAI 2021 Towards Robust Episodic Meta-Learning Beyza Ermis, Giovanni Zappella, Cédric Archambeau
ICML 2020 LEEP: A New Measure to Evaluate Transferability of Learned Representations Cuong Nguyen, Tal Hassner, Matthias Seeger, Cedric Archambeau
NeurIPS 2019 Learning Search Spaces for Bayesian Optimization: Another View of Hyperparameter Transfer Learning Valerio Perrone, Huibin Shen, Matthias W Seeger, Cedric Archambeau, Rodolphe Jenatton
NeurIPS 2018 Scalable Hyperparameter Transfer Learning Valerio Perrone, Rodolphe Jenatton, Matthias W Seeger, Cedric Archambeau
ICML 2017 Bayesian Optimization with Tree-Structured Dependencies Rodolphe Jenatton, Cedric Archambeau, Javier González, Matthias Seeger
ICML 2016 Adaptive Algorithms for Online Convex Optimization with Long-Term Constraints Rodolphe Jenatton, Jim Huang, Cedric Archambeau
ECML-PKDD 2013 Error Prediction with Partial Feedback William Darling, Cédric Archambeau, Shachar Mirkin, Guillaume Bouchard
UAI 2012 Plackett-Luce Regression: A New Bayesian Model for Polychotomous Data Cédric Archambeau, Francois Caron
AISTATS 2011 Robust Bayesian Matrix Factorisation Balaji Lakshminarayanan, Guillaume Bouchard, Cedric Archambeau
NeurIPS 2011 Sparse Bayesian Multi-Task Learning Shengbo Guo, Onno Zoeter, Cédric Archambeau
ICML 2009 A Stochastic Memoizer for Sequence Data Frank D. Wood, Cédric Archambeau, Jan Gasthaus, Lancelot James, Yee Whye Teh
NeurIPS 2008 Sparse Probabilistic Projections Cédric Archambeau, Francis R. Bach
NeurIPS 2007 Variational Inference for Diffusion Processes Cédric Archambeau, Manfred Opper, Yuan Shen, Dan Cornford, John S. Shawe-taylor
ICML 2006 Robust Probabilistic Projections Cédric Archambeau, Nicolas Delannay, Michel Verleysen