Asadi, Kavosh

18 publications

TMLR 2026 $\texttt{C2-DPO}$: Constrained Controlled Direct Preference Optimization Kavosh Asadi, Xingzi Xu, Julien Han, Ege Beyazit, Idan Pipano, Dominique Perrault-Joncas, Shoham Sabach, Mohammad Ghavamzadeh, Karim Bouyarmane
TMLR 2025 Activation Sharding for Scalable Training of Large Models Xingzi Xu, Amir Tavanaei, Kavosh Asadi, Karim Bouyarmane
ICML 2024 Learning the Target Network in Function Space Kavosh Asadi, Yao Liu, Shoham Sabach, Ming Yin, Rasool Fakoor
ICLR 2024 TAIL: Task-Specific Adapters for Imitation Learning with Large Pretrained Models Zuxin Liu, Jesse Zhang, Kavosh Asadi, Yao Liu, Ding Zhao, Shoham Sabach, Rasool Fakoor
AISTATS 2023 Coarse-Grained Smoothness for Reinforcement Learning in Metric Spaces Omer Gottesman, Kavosh Asadi, Cameron S. Allen, Samuel Lobel, George Konidaris, Michael Littman
NeurIPS 2023 Resetting the Optimizer in Deep RL: An Empirical Study Kavosh Asadi, Rasool Fakoor, Shoham Sabach
NeurIPSW 2023 TAIL: Task-Specific Adapters for Imitation Learning with Large Pretrained Models Zuxin Liu, Jesse Zhang, Kavosh Asadi, Yao Liu, Ding Zhao, Shoham Sabach, Rasool Fakoor
NeurIPS 2023 TD Convergence: An Optimization Perspective Kavosh Asadi, Shoham Sabach, Yao Liu, Omer Gottesman, Rasool Fakoor
NeurIPS 2022 Adaptive Interest for Emphatic Reinforcement Learning Martin Klissarov, Rasool Fakoor, Jonas W Mueller, Kavosh Asadi, Taesup Kim, Alexander J Smola
ICMLW 2022 Adaptive Interest for Emphatic Reinforcement Learning Martin Klissarov, Rasool Fakoor, Jonas Mueller, Kavosh Asadi, Taesup Kim, Alex Smola
NeurIPS 2022 Faster Deep Reinforcement Learning with Slower Online Network Kavosh Asadi, Rasool Fakoor, Omer Gottesman, Taesup Kim, Michael L. Littman, Alexander J Smola
NeurIPS 2021 Continuous Doubly Constrained Batch Reinforcement Learning Rasool Fakoor, Jonas W Mueller, Kavosh Asadi, Pratik Chaudhari, Alexander J Smola
AAAI 2021 Deep Radial-Basis Value Functions for Continuous Control Kavosh Asadi, Neev Parikh, Ronald E. Parr, George Dimitri Konidaris, Michael L. Littman
AAAI 2021 Lipschitz Lifelong Reinforcement Learning Erwan Lecarpentier, David Abel, Kavosh Asadi, Yuu Jinnai, Emmanuel Rachelson, Michael L. Littman
IJCAI 2019 DeepMellow: Removing the Need for a Target Network in Deep Q-Learning Seungchan Kim, Kavosh Asadi, Michael L. Littman, George Dimitri Konidaris
AAAI 2019 State Abstraction as Compression in Apprenticeship Learning David Abel, Dilip Arumugam, Kavosh Asadi, Yuu Jinnai, Michael L. Littman, Lawson L. S. Wong
ICML 2018 Lipschitz Continuity in Model-Based Reinforcement Learning Kavosh Asadi, Dipendra Misra, Michael Littman
ICML 2017 An Alternative SoftMax Operator for Reinforcement Learning Kavosh Asadi, Michael L. Littman