ML Anthology
Authors
Search
About
Attias, Idan
22 publications
COLT
2025
Capacity-Constrained Online Learning with Delays: Scheduling Frameworks and Regret Trade-Offs
Alexander Ryabchenko
,
Idan Attias
,
Daniel M. Roy
NeurIPS
2025
On Traceability in $\ell_p$ Stochastic Convex Optimization
Sasha Voitovych
,
Mahdi Haghifam
,
Idan Attias
,
Gintare Karolina Dziugaite
,
Roi Livni
,
Daniel M. Roy
ICML
2025
PAC Learning with Improvements
Idan Attias
,
Avrim Blum
,
Keziah Naggita
,
Donya Saless
,
Dravyansh Sharma
,
Matthew Walter
ALT
2025
Sample Compression Scheme Reductions
Idan Attias
,
Steve Hanneke
,
Arvind Ramaswami
NeurIPS
2025
Tradeoffs Between Mistakes and ERM Oracle Calls in Online and Transductive Online Learning
Idan Attias
,
Steve Hanneke
,
Arvind Ramaswami
ICML
2024
Agnostic Sample Compression Schemes for Regression
Idan Attias
,
Steve Hanneke
,
Aryeh Kontorovich
,
Menachem Sadigurschi
ICML
2024
Causal Bandits: The Pareto Optimal Frontier of Adaptivity, a Reduction to Linear Bandits, and Limitations Around Unknown Marginals
Ziyi Liu
,
Idan Attias
,
Daniel M. Roy
ICMLW
2024
Causal Bandits: The Pareto Optimal Frontier of Adaptivity, a Reduction to Linear Bandits, and Limitations Around Unknown Marginals
Ziyi Liu
,
Idan Attias
,
Daniel M. Roy
JMLR
2024
Fat-Shattering Dimension of K-Fold Aggregations
Idan Attias
,
Aryeh Kontorovich
ICML
2024
Information Complexity of Stochastic Convex Optimization: Applications to Generalization, Memorization, and Tracing
Idan Attias
,
Gintare Karolina Dziugaite
,
Mahdi Haghifam
,
Roi Livni
,
Daniel M. Roy
NeurIPS
2024
Sequential Probability Assignment with Contexts: Minimax Regret, Contextual Shtarkov Sums, and Contextual Normalized Maximum Likelihood
Ziyi Liu
,
Idan Attias
,
Daniel M. Roy
ICMLW
2024
The Minimax Regret of Sequential Probability Assignment, Contextual Shtarkov Sums, and Contextual Normalized Maximum Likelihood
Ziyi Liu
,
Idan Attias
,
Daniel M. Roy
COLT
2024
Universal Rates for Regression: Separations Between Cut-Off and Absolute Loss
Idan Attias
,
Steve Hanneke
,
Alkis Kalavasis
,
Amin Karbasi
,
Grigoris Velegkas
ICML
2023
Adversarially Robust PAC Learnability of Real-Valued Functions
Idan Attias
,
Steve Hanneke
AAAI
2023
Learning Revenue Maximization Using Posted Prices for Stochastic Strategic Patient Buyers
Eitan-Hai Mashiah
,
Idan Attias
,
Yishay Mansour
COLT
2023
Online Learning and Solving Infinite Games with an ERM Oracle
Angelos Assos
,
Idan Attias
,
Yuval Dagan
,
Constantinos Daskalakis
,
Maxwell K. Fishelson
NeurIPS
2023
Optimal Learners for Realizable Regression: PAC Learning and Online Learning
Idan Attias
,
Steve Hanneke
,
Alkis Kalavasis
,
Amin Karbasi
,
Grigoris Velegkas
NeurIPS
2022
A Characterization of Semi-Supervised Adversarially Robust PAC Learnability
Idan Attias
,
Steve Hanneke
,
Yishay Mansour
TMLR
2022
Domain Invariant Adversarial Learning
Matan Levi
,
Idan Attias
,
Aryeh Kontorovich
JMLR
2022
Improved Generalization Bounds for Adversarially Robust Learning
Idan Attias
,
Aryeh Kontorovich
,
Yishay Mansour
NeurIPS
2020
Prediction with Corrupted Expert Advice
Idan Amir
,
Idan Attias
,
Tomer Koren
,
Yishay Mansour
,
Roi Livni
ALT
2019
Improved Generalization Bounds for Robust Learning
Idan Attias
,
Aryeh Kontorovich
,
Yishay Mansour