ML Anthology
Authors
Search
About
Azizan, Navid
16 publications
NeurIPS
2025
Activation-Informed Merging of Large Language Models
Amin Heyrani Nobari
,
Kaveh Alim
,
Ali ArjomandBigdeli
,
Akash Srivastava
,
Faez Ahmed
,
Navid Azizan
NeurIPS
2025
Know What You Don't Know: Uncertainty Calibration of Process Reward Models
Young-Jin Park
,
Kristjan Greenewald
,
Kaveh Alim
,
Hao Wang
,
Navid Azizan
L4DC
2025
Meta-Learning for Adaptive Control with Automated Mirror Descent
Sunbochen Tang
,
Haoyuan Sun
,
Navid Azizan
NeurIPSW
2024
Optimizing Attention with Mirror Descent: Generalized Max-Margin Token Selection
Aaron Alvarado Kristanto Julistiono
,
Davoud Ataee Tarzanagh
,
Navid Azizan
NeurIPSW
2024
Probabilistic Forecasting for Building Energy Systems: Are Time-Series Foundation Models the Answer?
Young-Jin Park
,
François Germain
,
Jing Liu
,
Ye Wang
,
Gordon Wichern
,
Toshiaki Koike-Akino
,
Navid Azizan
,
Christopher R. Laughman
,
Ankush Chakrabarty
UAI
2024
Quantifying Representation Reliability in Self-Supervised Learning Models
Young-Jin Park
,
Hao Wang
,
Shervin Ardeshir
,
Navid Azizan
JMLR
2023
A Unified Approach to Controlling Implicit Regularization via Mirror Descent
Haoyuan Sun
,
Khashayar Gatmiry
,
Kwangjun Ahn
,
Navid Azizan
ICML
2023
Learning Control-Oriented Dynamical Structure from Data
Spencer M. Richards
,
Jean-Jacques Slotine
,
Navid Azizan
,
Marco Pavone
AISTATS
2023
Online Learning for Traffic Routing Under Unknown Preferences
Devansh Jalota
,
Karthik Gopalakrishnan
,
Navid Azizan
,
Ramesh Johari
,
Marco Pavone
AISTATS
2022
A Unified View of SDP-Based Neural Network Verification Through Completely Positive Programming
Robin A. Brown
,
Edward Schmerling
,
Navid Azizan
,
Marco Pavone
NeurIPSW
2022
Embedding Reliability: On the Predictability of Downstream Performance
Shervin Ardeshir
,
Navid Azizan
NeurIPS
2022
Mirror Descent Maximizes Generalized Margin and Can Be Implemented Efficiently
Haoyuan Sun
,
Kwangjun Ahn
,
Christos Thrampoulidis
,
Navid Azizan
NeurIPSW
2022
Uncertainty-Aware Meta-Learning for Multimodal Task Distributions
Cesar Almecija
,
Apoorva Sharma
,
Young-Jin Park
,
Navid Azizan
UAI
2021
Sketching Curvature for Efficient Out-of-Distribution Detection for Deep Neural Networks
Apoorva Sharma
,
Navid Azizan
,
Marco Pavone
AISTATS
2020
Orthogonal Gradient Descent for Continual Learning
Mehrdad Farajtabar
,
Navid Azizan
,
Alex Mott
,
Ang Li
ICLR
2019
Stochastic Gradient/Mirror Descent: Minimax Optimality and Implicit Regularization
Navid Azizan
,
Babak Hassibi