ML Anthology
Authors
Search
About
Baader, Maximilian
20 publications
ICML
2025
A Unified Approach to Routing and Cascading for LLMs
Jasper Dekoninck
,
Maximilian Baader
,
Martin Vechev
ICLRW
2025
A Unified Approach to Routing and Cascading for LLMs
Jasper Dekoninck
,
Maximilian Baader
,
Martin Vechev
ICML
2025
BaxBench: Can LLMs Generate Correct and Secure Backends?
Mark Vero
,
Niels Mündler
,
Victor Chibotaru
,
Veselin Raychev
,
Maximilian Baader
,
Nikola Jovanović
,
Jingxuan He
,
Martin Vechev
ICLRW
2025
BaxBench: Can LLMs Generate Correct and Secure Backends?
Mark Vero
,
Niels Mündler
,
Victor Chibotaru
,
Veselin Raychev
,
Maximilian Baader
,
Nikola Jovanović
,
Jingxuan He
,
Martin Vechev
TMLR
2025
Certified Robustness to Data Poisoning in Gradient-Based Training
Philip Sosnin
,
Mark Niklas Mueller
,
Maximilian Baader
,
Calvin Tsay
,
Matthew Robert Wicker
ICLR
2025
GRAIN: Exact Graph Reconstruction from Gradients
Maria Drencheva
,
Ivo Petrov
,
Maximilian Baader
,
Dimitar Iliev Dimitrov
,
Martin Vechev
TMLR
2025
Gaussian Loss Smoothing Enables Certified Training with Tight Convex Relaxations
Stefan Balauca
,
Mark Niklas Mueller
,
Yuhao Mao
,
Maximilian Baader
,
Marc Fischer
,
Martin Vechev
ICLR
2025
Polyrating: A Cost-Effective and Bias-Aware Rating System for LLM Evaluation
Jasper Dekoninck
,
Maximilian Baader
,
Martin Vechev
ICLR
2025
Ward: Provable RAG Dataset Inference via LLM Watermarks
Nikola Jovanović
,
Robin Staab
,
Maximilian Baader
,
Martin Vechev
NeurIPS
2024
DAGER: Exact Gradient Inversion for Large Language Models
Ivo Petrov
,
Dimitar I. Dimitrov
,
Maximilian Baader
,
Mark Niklas Müller
,
Martin Vechev
ICLR
2024
Expressivity of ReLU-Networks Under Convex Relaxations
Maximilian Baader
,
Mark Niklas Mueller
,
Yuhao Mao
,
Martin Vechev
NeurIPS
2024
SPEAR: Exact Gradient Inversion of Batches in Federated Learning
Dimitar I. Dimitrov
,
Maximilian Baader
,
Mark Niklas Müller
,
Martin Vechev
ECCV
2022
Latent Space Smoothing for Individually Fair Representations
Momchil Peychev
,
Anian Ruoss
,
Mislav Balunović
,
Maximilian Baader
,
Martin Vechev
TMLR
2022
On the Paradox of Certified Training
Nikola Jovanović
,
Mislav Balunovic
,
Maximilian Baader
,
Martin Vechev
TMLR
2022
The Fundamental Limits of Neural Networks for Interval Certified Robustness
Matthew B Mirman
,
Maximilian Baader
,
Martin Vechev
AAAI
2021
Efficient Certification of Spatial Robustness
Anian Ruoss
,
Maximilian Baader
,
Mislav Balunovic
,
Martin T. Vechev
ICML
2021
Scalable Certified Segmentation via Randomized Smoothing
Marc Fischer
,
Maximilian Baader
,
Martin Vechev
NeurIPS
2020
Certified Defense to Image Transformations via Randomized Smoothing
Marc Fischer
,
Maximilian Baader
,
Martin Vechev
ICLR
2020
Universal Approximation with Certified Networks
Maximilian Baader
,
Matthew Mirman
,
Martin Vechev
NeurIPS
2019
Certifying Geometric Robustness of Neural Networks
Mislav Balunovic
,
Maximilian Baader
,
Gagandeep Singh
,
Timon Gehr
,
Martin Vechev