ML Anthology
Authors
Search
About
Bachman, Philip
21 publications
NeurIPS
2023
Ignorance Is Bliss: Robust Control via Information Gating
Manan Tomar
,
Riashat Islam
,
Matthew Taylor
,
Sergey Levine
,
Philip Bachman
ICMLW
2023
Video-Guided Skill Discovery
Manan Tomar
,
Dibya Ghosh
,
Vivek Myers
,
Anca Dragan
,
Matthew E. Taylor
,
Philip Bachman
,
Sergey Levine
ICLR
2021
Data-Efficient Reinforcement Learning with Self-Predictive Representations
Max Schwarzer
,
Ankesh Anand
,
Rishab Goel
,
R Devon Hjelm
,
Aaron Courville
,
Philip Bachman
ICML
2021
Decomposed Mutual Information Estimation for Contrastive Representation Learning
Alessandro Sordoni
,
Nouha Dziri
,
Hannes Schulz
,
Geoff Gordon
,
Philip Bachman
,
Remi Tachet Des Combes
NeurIPS
2021
Pretraining Representations for Data-Efficient Reinforcement Learning
Max Schwarzer
,
Nitarshan Rajkumar
,
Michael Noukhovitch
,
Ankesh Anand
,
Laurent Charlin
,
R Devon Hjelm
,
Philip Bachman
,
Aaron C. Courville
NeurIPS
2020
Deep Reinforcement and InfoMax Learning
Bogdan Mazoure
,
Remi Tachet des Combes
,
Thang Long Doan
,
Philip Bachman
,
R Devon Hjelm
NeurIPS
2019
Learning Representations by Maximizing Mutual Information Across Views
Philip Bachman
,
R Devon Hjelm
,
William Buchwalter
ICML
2018
Augmented CycleGAN: Learning Many-to-Many Mappings from Unpaired Data
Amjad Almahairi
,
Sai Rajeshwar
,
Alessandro Sordoni
,
Philip Bachman
,
Aaron Courville
AAAI
2018
Deep Reinforcement Learning That Matters
Peter Henderson
,
Riashat Islam
,
Philip Bachman
,
Joelle Pineau
,
Doina Precup
,
David Meger
ICLR
2017
Calibrating Energy-Based Generative Adversarial Networks
Zihang Dai
,
Amjad Almahairi
,
Philip Bachman
,
Eduard H. Hovy
,
Aaron C. Courville
ICML
2017
Learning Algorithms for Active Learning
Philip Bachman
,
Alessandro Sordoni
,
Adam Trischler
ICLR
2017
Learning Algorithms for Active Learning
Philip Bachman
,
Alessandro Sordoni
,
Adam Trischler
ICLR
2017
Natural Language Generation in Dialogue Using Lexicalized and Delexicalized Data
Shikhar Sharma
,
Jing He
,
Kaheer Suleman
,
Hannes Schulz
,
Philip Bachman
NeurIPS
2016
An Architecture for Deep, Hierarchical Generative Models
Philip Bachman
NeurIPS
2015
Data Generation as Sequential Decision Making
Philip Bachman
,
Doina Precup
ICML
2015
Variational Generative Stochastic Networks with Collaborative Shaping
Philip Bachman
,
Doina Precup
NeurIPS
2014
Learning with Pseudo-Ensembles
Philip Bachman
,
Ouais Alsharif
,
Doina Precup
ICML
2014
Sample-Based Approximate Regularization
Philip Bachman
,
Amir-Massoud Farahmand
,
Doina Precup
ECML-PKDD
2013
Greedy Confidence Pursuit: A Pragmatic Approach to Multi-Bandit Optimization
Philip Bachman
,
Doina Precup
ICML
2012
Improved Estimation in Time Varying Models
Doina Precup
,
Philip Bachman
AAAI
2011
Learning Compact Representations of Time-Varying Processes
Philip Bachman
,
Doina Precup