ML Anthology
Authors
Search
About
Bagnell, J. Andrew
35 publications
NeurIPS
2024
REBEL: Reinforcement Learning via Regressing Relative Rewards
Zhaolin Gao
,
Jonathan D. Chang
,
Wenhao Zhan
,
Owen Oertell
,
Gokul Swamy
,
Kianté Brantley
,
Thorsten Joachims
,
J. Andrew Bagnell
,
Jason D. Lee
,
Wen Sun
ICMLW
2024
REBEL: Reinforcement Learning via Regressing Relative Rewards
Zhaolin Gao
,
Jonathan Daniel Chang
,
Wenhao Zhan
,
Owen Oertell
,
Gokul Swamy
,
Kianté Brantley
,
Thorsten Joachims
,
J. Andrew Bagnell
,
Jason D. Lee
,
Wen Sun
ICMLW
2024
REBEL: Reinforcement Learning via Regressing Relative Rewards
Zhaolin Gao
,
Jonathan Daniel Chang
,
Wenhao Zhan
,
Owen Oertell
,
Gokul Swamy
,
Kianté Brantley
,
Thorsten Joachims
,
J. Andrew Bagnell
,
Jason D. Lee
,
Wen Sun
NeurIPS
2024
The Importance of Online Data: Understanding Preference Fine-Tuning via Coverage
Yuda Song
,
Gokul Swamy
,
Aarti Singh
,
J. Andrew Bagnell
,
Wen Sun
L4DC
2022
On the Effectiveness of Iterative Learning Control
Anirudh Vemula
,
Wen Sun
,
Maxim Likhachev
,
J. Andrew Bagnell
AAAI
2021
CMAX++ : Leveraging Experience in Planning and Execution Using Inaccurate Models
Anirudh Vemula
,
J. Andrew Bagnell
,
Maxim Likhachev
ICML
2021
Of Moments and Matching: A Game-Theoretic Framework for Closing the Imitation Gap
Gokul Swamy
,
Sanjiban Choudhury
,
J. Andrew Bagnell
,
Steven Wu
AAAI
2019
Learning Anytime Predictions in Neural Networks via Adaptive Loss Balancing
Hanzhang Hu
,
Debadeepta Dey
,
Martial Hebert
,
J. Andrew Bagnell
ICLR
2018
Truncated Horizon Policy Search: Combining Reinforcement Learning & Imitation Learning
Wen Sun
,
J. Andrew Bagnell
,
Byron Boots
ICML
2017
Deeply AggreVaTeD: Differentiable Imitation Learning for Sequential Prediction
Wen Sun
,
Arun Venkatraman
,
Geoffrey J. Gordon
,
Byron Boots
,
J. Andrew Bagnell
AISTATS
2017
Gradient Boosting on Stochastic Data Streams
Hanzhang Hu
,
Wen Sun
,
Arun Venkatraman
,
Martial Hebert
,
J. Andrew Bagnell
ECCV
2016
A Discriminative Framework for Anomaly Detection in Large Videos
Allison Del Giorno
,
J. Andrew Bagnell
,
Martial Hebert
UAI
2016
Efficient Feature Group Sequencing for Anytime Linear Prediction
Hanzhang Hu
,
Alexander Grubb
,
J. Andrew Bagnell
,
Martial Hebert
IJCAI
2016
Inference Machines for Nonparametric Filter Learning
Arun Venkatraman
,
Wen Sun
,
Martial Hebert
,
Byron Boots
,
J. Andrew Bagnell
ICML
2016
Learning to Filter with Predictive State Inference Machines
Wen Sun
,
Arun Venkatraman
,
Byron Boots
,
J.Andrew Bagnell
UAI
2016
Learning to Smooth with Bidirectional Predictive State Inference Machines
Wen Sun
,
Roberto Capobianco
,
Geoffrey J. Gordon
,
J. Andrew Bagnell
,
Byron Boots
IJCAI
2016
Online Bellman Residual and Temporal Difference Algorithms with Predictive Error Guarantees
Wen Sun
,
J. Andrew Bagnell
AAAI
2016
Online Instrumental Variable Regression with Applications to Online Linear System Identification
Arun Venkatraman
,
Wen Sun
,
Martial Hebert
,
J. Andrew Bagnell
,
Byron Boots
AAAI
2015
Improving Multi-Step Prediction of Learned Time Series Models
Arun Venkatraman
,
Martial Hebert
,
J. Andrew Bagnell
UAI
2015
Online Bellman Residual Algorithms with Predictive Error Guarantees
Wen Sun
,
J. Andrew Bagnell
ICCV
2015
Predicting Multiple Structured Visual Interpretations
Debadeepta Dey
,
Varun Ramakrishna
,
Martial Hebert
,
J. Andrew Bagnell
AAAI
2015
Submodular Surrogates for Value of Information
Yuxin Chen
,
Shervin Javdani
,
Amin Karbasi
,
J. Andrew Bagnell
,
Siddhartha S. Srinivasa
,
Andreas Krause
CVPR
2011
Learning Message-Passing Inference Machines for Structured Prediction
Stéphane Ross
,
Daniel Munoz
,
Martial Hebert
,
J. Andrew Bagnell
ICML
2010
Boosted Backpropagation Learning for Training Deep Modular Networks
Alexander Grubb
,
J. Andrew Bagnell
ICML
2010
Modeling Interaction via the Principle of Maximum Causal Entropy
Brian D. Ziebart
,
J. Andrew Bagnell
,
Anind K. Dey
ECCV
2010
Stacked Hierarchical Labeling
Daniel Munoz
,
J. Andrew Bagnell
,
Martial Hebert
UAI
2009
Convex Coding
David M. Bradley
,
J. Andrew Bagnell
AISTATS
2009
Inverse Optimal Heuristic Control for Imitation Learning
Nathan Ratliff
,
Brian Ziebart
,
Kevin Peterson
,
J. Andrew Bagnell
,
Martial Hebert
,
Anind K. Dey
,
Siddhartha Srinivasa
AAAI
2008
Maximum Entropy Inverse Reinforcement Learning
Brian D. Ziebart
,
Andrew L. Maas
,
J. Andrew Bagnell
,
Anind K. Dey
AISTATS
2007
(Approximate) Subgradient Methods for Structured Prediction
Nathan D. Ratliff
,
J. Andrew Bagnell
,
Martin A. Zinkevich
IJCAI
2007
Kernel Conjugate Gradient for Fast Kernel Machines
Nathan D. Ratliff
,
J. Andrew Bagnell
ICML
2006
Maximum Margin Planning
Nathan D. Ratliff
,
J. Andrew Bagnell
,
Martin Zinkevich
AAAI
2005
Robust Supervised Learning
J. Andrew Bagnell
IJCAI
2003
Covariant Policy Search
J. Andrew Bagnell
,
Jeff G. Schneider
UAI
2002
Learning with Scope, with Application to Information Extraction and Classification
David M. Blei
,
J. Andrew Bagnell
,
Andrew Kachites McCallum